

If calling, please ask for Democratic Services

Transport Committee

Thursday 9 September 2021, 9.30am Remotely, via Microsoft Teams

Members

Cr Blakeley (Chair)	Cr Lee (Deputy Chair)
Cr Brash	Cr Connelly
Cr Gaylor	Cr Hughes
Cr Kirk-Burnnand	Cr Laban
Cr Lamason	Cr Nash
Cr Ponter	Cr Staples
Cr van Lier	

Recommendations in reports are not to be construed as Council policy until adopted by Council

Transport Committee

Thursday 9 September 2021, 9.30am

Remotely, via Microsoft Teams

Public Business

No.	Item	Report	Page
1.	Apologies		
2.	Conflict of interest declarations		
3.	Public participation		
4.	Confirmation of the Public minutes of the Transport committee meeting on 5 August 2021	21.359	3
5.	Update on the Progress of Action Items – September 2021	21.416	7
6.	COVID-19 Metlink Response – Update	21.400	11
7.	Let's Get Wellington Moving – City Streets – Indicative Business Case	21.346	17
8.	Adoption of Metlink Accessibility Charter	21.361	243
9.	Recent Derailment Incident on the Network	21.402	255
10.	Public Transport Performance – July and Alert Level 4 Update	21.401	263

Please note these minutes remain unconfirmed until the Transport Committee meeting on 9 September 2021.

Report 21.359

Public minutes of the Transport Committee meeting on Thursday 5 August 2021

Taumata Kōrero – Council Chamber, Greater Wellington Regional Council 100 Cuba Street, Te Aro, Wellington at 9.30am.

Members Present

Councillor Blakeley (Chair) Councillor Lee (Deputy Chair) Councillor Brash Councillor Connelly Councillor Gaylor Councillor Hughes Councillor Kirk-Burnnand Councillor Laban Councillor Laban Councillor Lamason Councillor Ponter Councillor Nash Councillor Staples Councillor van Lier

Karakia timatanga

The Committee Chair invited Councillor Lee to open the meeting with a karakia timatanga – whakataka te hau.

Public Business

1 Apologies

There were no apologies.

2 Declarations of conflicts of interest

There were no declarations of conflicts of interest.

3 Public participation

Pete Gent spoke on a Snapper on rail trial and payment options on the rail system.

The Poneke Collective for Public Transport Equity, represented by Katherine Blow, Mika Herval, Gina Dao-Mclay, Tessa Guest, Khushboo Singh and Elizabeth Hodgson, spoke on a pilot of free public transport for students and community services card holders.

Noted: The Committee Chair provided the Poneke Collective a copy of the letter sent by the Council Chair to the Minister of Transport requesting that the Wellington Region be included in the Community Connect concession pilot.

4 Confirmation of the Public minutes of the Transport Committee meeting on 10 June 2021 - Report 21.254

Moved: Cr Ponter / Cr Lamason

That the Committee confirms the Public minutes of the Transport Committee meeting on 10 June 2021 – Report 21.254.

The motion was carried.

5 Update on progress of action items – August 2021 – Report 21.348 [For information]

Scott Gallacher, General Manager, Metlink, spoke to the report.

6 Earlybird Off-Peak Bus Fare Trial – Report 21.328

Tim Shackleton, Manager, Strategy and Investments, spoke to the report.

Moved: Cr Nash / Cr Ponter

That the Committee:

- 1 Notes that, on 4 February 2020, Council agreed to proceed with an Earlybird offpeak bus fares trial (the Trial) to provide off-peak Snapper fares for Metlink bus services prior to 7am on working days - Earlybird off-peak fares trial (Report 20.22).
- 2 Notes that, on 21 May 2020 (Report 20.147), as a result of the impact on patronage caused by COVID-19, Council agreed to suspend the Trial until February 2021 and then reinstate it for a period of three months
- 3 Notes that on 6 May 2021 (Report 21.157), as a result of the continued impact on patronage caused by the changes to COVID-19 alert levels, the Committee agreed to extend the Trial for a period of three additional months from 22 May 2021.
- 4 Notes that the Trial was to be monitored continually against success criteria to determine whether the Trial was effective in spreading peak demand on the bus network in Wellington City.
- 5 Agrees to adopt a 25 percent off-peak discount for bus travel prior to 7am.

- 6 Agrees to consider other demand management options as part of the fares transition planning in the lead up to the National Ticketing Solution (NTS).
- 7 Notes that Council consideration of the revised fares policy for the NTS is expected by the end of 2021 with public consultation on fares planned for the 2022 calendar year.
- 8 Notes that should the Committee agree with the recommended retention of the 25% discount, the proposed change will be formally publicised through appropriate channels.

The motion was carried.

7 Report of the Public Transport Advisory Group Meeting – 8 July 2021 – Report 21.329 [For information]

Cr Lee spoke to the report.

The meeting adjourned at 10.39am and resumed at 10.55am

The Committee Chair accorded priority to agenda item 9 – *Operator update – Uzabus,* in accordance with Standing Order 3.5.2.

8 **Operator Update – UzaBus – Oral Report** [For information]

Justin Allan, Company Director, UzaBus, tabled a presentation and spoke to the Committee regarding Uzabus's operations.

Mr Allan advised that Uzabus is an amalgamation of seven-passenger transport companies and in October 2020, celebrated its 100-year anniversary. It is a family-owned business with Mr Allan the third generation Director. The company's work consists of 65 percent contracts, 25 percent charters and, until the impact of COVID-19, 10 percent cruise and tours.

Uzabus were awarded the Metlink Kāpiti Unit 14 contract which commenced July 2018 operating a total of 21 vehicles. Mr Allan provided the Committee detail on Uzabus's 21 fleet vehicles and future fleet developments, including a three-month trial of Yutong 12 metre electric bus.

Mr Allan noted that Uzabus provides strong performance to Metlink, with no abatements from contract commencement and consistently reports strong reliability and punctuality data. Mr Allan credited his team for achieving this result and advised that positive employee relations and driver retention efforts are key in maintaining the strong results.

9 Public Transport Performance – June 2021 – Report 21.327 [For information]

Scott Gallacher, General Manager, Metlink, spoke to the report.

Mr Gallacher provided an update with new data made available after the publication of the report. Mr Gallacher advised that cancellations for operator Tranzurban have decreased to approximately 2 percent since the implementation of new timetables on Sunday 25 July 2021.

Mr Gallacher also provided an update on the launch of the new hospital express service which was developed in consultation with the Capital and Coast District Health Boards. This new route runs along the "second spine" as an express service between the hospital and railway station at times of morning and evening changes of shifts. A communication plan will be developed to publicise the route.

The meeting closed at 12pm.

Councillor R Blakeley

Chair

Date:

Transport Committee 9 September 2021 Report 21.416

For Information

UPDATE ON THE PROGRESS OF ACTION ITEMS – SEPTEMBER 2021

Te take mō te pūrongo Purpose

1. To update the Transport Committee (the Committee) on the progress of action items arising from previous Committee meetings.

Te horopaki Context

2. Items raised at the Committee's previous meetings, which require action by officers, are listed in **Attachment 1.** For all previous action items, the current status and a brief comment is provided on progress to date.

Ngā hua ahumoni Financial implications

3. There are no financial implications from this report, but there may be implications arising from the actions listed.

Ngā tūāoma e whai ake nei Next steps

4. All completed items will be removed from the action items table for the next report. Items not completed will continue to be progressed. Any new items will be added to the table, following this Committee meeting, and circulated to the relevant business group for action.

Ngā āpitihanga Attachment

Number	Title
1	Action items from previous Committee meetings – September 2021

Ngā kaiwaitohu Signatory

Approver	Scott Gallacher - General Manager, Metlink
----------	--

He whakarāpopoto i ngā huritaonga Summary of considerations

Fit with Council's roles or with Committee's terms of reference

The action items are of an administrative nature and support the functioning of the Committee.

Implications for Māori

There are no direct implications for Māori arising from this report.

Contribution to Annual Plan / Long Term Plan / Other key strategies and policies

Action items contribute to Council's or Greater Wellington's related strategies, policies and plans to the extent identified in **Attachment 1.**

Internal consultation

There was no additional internal consultation in preparing this report and updating the action items.

Risks and impacts - legal / health and safety etc.

There are no known risks or impacts

Meeting date	Action	Status and comment
17 September	Round the Bays 2021 – Public	Status
2020	Transport Support – Report PE20.295	In progress
	Noted	Comment
	The Committee requested that the 'Operational guidelines – requests for sponsorship or free fares for events' be reviewed.	Customer Engagement is in the process of developing a GW-wide sponsorship policy; this policy will include Metlink sponsorship matters.
20 April 2021	Hearing of submissions on the	Status
	Regional Public Transport Plan	In progress
	Noted	Comment
	The Committee requested that officers organise a field trip to Naenae train station, and invite the appropriate councillors from Hutt City Council, officers from KiwiRail, and Lily Chalmers (speaker 23).	A field trip was scheduled to be held on 8 September. However, due to the current COVID-19 situation this trip has been postponed.
	At its meeting on 10 June 2021, the Committee requested that the field trip be scheduled earlier than the proposed September date and that the itinerary be expanded to include visits to sister stations in the area.	
Actions arising f	rom the Long Term Plan hearing	
18 May 2021	Noted	Status
	The Committee requested that	In progress
	officers prepare report to the	Comment
	Transport Committee on the fare structure review and giving consideration to concessions for part time students. At its meeting on 10 June 2021, the Committee requested that the fare structure review includes consideration to giving concessions for community services card holders.	As part on the National Ticketing Solution - fares and concession alignment is being reviewed at a national level (in coordination with Waka Kotahi). Officers will provide regular updates / reports on this as the NTS work-stream progresses. Consideration of

Action items from previous Transport Committee meetings

Meeting date	Action	Status and comment
		concessions will form part of this work.

Transport Committee 9 September 2021 Report 21.400

For Information

COVID-19: METLINK RESPONSE - UPDATE

Te take mō te pūrongo Purpose

1. To provide the Transport Committee with an update on Metlink's COVID-19 response.

Te horopaki Context

Current situation

- At 11:59pm on Tuesday, 17 August 2021, New Zealand moved to COVID-19 Alert Level
 At 11.59pm on Tuesday, 31 August 2021, the Wellington Region moved to COVID-19 Alert Level 3.
- 3. Metlink and our operators were well prepared for this change to the Alert Levels and have implemented our prepared plans for this move in alert level.

Actions taken – update since previous report to Council on 18 August 2021 (Report 21.388)

Safety measures

- 4. The safety of passengers and frontline staff is Metlink's most important consideration as we respond to COVID-19.
- 5. Metlink provides a safe environment for passengers by implementing all Government guidance such as social distancing on services and maintaining our enhanced cleaning regime.

Vaccinations for public transport workers

- 6. Officers have worked closely with the Capital Coast District Health Board to facilitate priority vaccinations for our public transport workforce (including, cleaning and maintenance staff).
- 7. The Capital Coast District Health Board is working with each operator to develop a vaccination plan for their workers, this includes their whanau and home bubbles.

Access to services – passengers with mobility needs

8. As previously advised (Report 21.388), rear door loading for buses and isolating rail staff from our passengers has been implemented to maintain social distancing. This measure continues at Alert Level 3.

- 9. Metlink is offering a free service for people with mobility issues who are unable to access public transport while these safety measures are in place.
- 10. Metlink is encouraging people who are unable to use our services due to the safety measures, to contact us directly on 0800 801 700 to arrange transport.
- 11. Please note that passengers using these alternative services will need to wear face coverings in line with strengthened government advice.
- 12. We are working with disability and accessibility organisations directly to promote this service.
- 13. Information on this service is available on our website at http://www.metlink.org.nz/news-and-updates/covid-19/

Appropriate passenger distancing on services

- 14. At Alert Levels 4 and 3, passengers on Metlink's bus and rail services are required to maintain a one metre distance from each other.
- 15. Metlink has arranged for stickers to be installed on bus and rail services to ensure that appropriate distancing between passengers occurs.

Engagement with operators, unions and front line staff

- 16. Operators, unions and frontline staff are integral to the success of our collective response to COVID-19.
- 17. Metlink officers facilitate regular meetings with senior leadership from our operators to discuss the current response to COVID-19.
- 18. In addition, Metlink officers facilitate regular meetings with unions to discuss the current response to COVID-19.
- 19. Attached is a copy of a poster distributed to our front line teams to ensure consistent and clear messaging from Metlink on measures we are taking which impact them (Attachments 1 and 2).

Tickets

- 20. Officers recognise that some customers have been disadvantaged in not being able to use pre-purchased tickets, such as monthly passes.
- 21. Officers are working to ensure that customers who have pre-purchased tickets are not disadvantaged by the Alert Level 4 or Alert Level 3 measures.
- 22. Information regarding our approach for customers with pre-purchased tickets is available on our website at: <u>http://www.metlink.org.nz/news-and-updates/covid-19/</u>

Service operation at Alert Level 3

- 23. At Alert Level 3 bus and rail services operate a Saturday timetable (some additional services operate for Capital and Coast District Health Board staff).
- 24. The harbour ferry services will not operate.

Preparing for a further move in alert levels

25. Metlink and our operators are prepared for a further move in alert levels.

26. Safety measures will comply with government direction.

Alert Level 2

- 27. At Alert Level 2 bus, rail and ferry operations are likely to revert to normal scheduled timetabling.
- 28. In the event that physical distancing is required (assuming 1 metre distance) capacity on each service will be reduced by between 50% and 65% (approximately). The percentage varies based on the layout of the particular vehicle.

Alert Level 1

29. At Alert Level 1 bus, rail and ferry operations will remain at normal scheduled timetabling.

Ngā tūāoma e whai ake nei Next steps

30. Officers will continue to monitor the situation as it evolves and make any necessary operational adjustments in line with the Government's alert level guidelines and Metlink's Business Continuity Plan.

Ngā āpitihanga Attachments

Number	Title
1	Poster for front line staff – Alert Level 4
2	Poster for front line staff – Alert Level 3

Ngā kaiwaitohu Signatories

Writer	Matthew Lear – Principal Advisor, Operations
Approvers	Melissa Anderson – Manager, Metlink Operations
	Scott Gallacher – General Manager, Metlink

He whakarāpopoto i ngā huritaonga Summary of considerations

Fit with Council's roles or Committee's terms of reference

This is an information report for the Transport Committee.

Implications for Māori

There are no implications for Māori.

Contribution to Annual Plan / Long term Plan / Other key strategies and policies

This report relates to Metlink's response to the impact of the COVID-19 pandemic on public transport, which is a key activity in the Long Term Plan 2021—31.

Internal consultation

There has been no internal consultation outside of Metlink.

Risks and impacts: legal / health and safety etc.

This report sets out actions taken to respond to our public transport responsibilities under the Government's alert level system.

A staff.

What you need to know.

The Government has extended the lock-down period in Alert Level 4 for the Wellington Region until 11:59pm on Friday, 27 August. Metlink will continue to offer a Saturday timetable across the bus and train network.

We care about you and your safety and will continue to follow the guidance from the Government.

- Face coverings are mandatory on public transport for staff and customers
- We will continue with rear door loading on bus and isolated carriages for rail
- If a customer is unable to use the rear door, please ask them to call Metlink on 0800 801 700 so we can provide another way for them to travel
- Fares will continue to be collected with Snapper on bus, and on rail, customers will need to clip themselves. No cash is accepted at this time
- SuperGold weekday hours still apply Monday to Friday and is available all-day Saturday and Sunday
- A Saturday timetable will continue to operate everyday until further notice (including Sunday's)
- It is important to note that you will not be disadvantaged in your pay, if you have any concerns please speak with your employer

Vaccinations for staff.

- Our Government has prioritised public transport workers for vaccination
- The Capital Coast District Health Board is working with each operator to develop a vaccination plan for their workers, this includes your whanau and home bubbles

15

• Your employer will communicate the vaccination plan with you shortly

31 August 2021

Information for Metlink staff.

What you need to know for Alert Level 3

Metlink cares about you and your safety, and continues to follow the guidance from our Government.

- Face coverings remain mandatory for staff and customers
- Metlink will continue with rear door boarding on bus, and isolated carriages on trains
- If a customer is unable to use the rear door, please ask them to call Metlink on 0800 801 700 so we can provide an alternative way for them to travel
- No cash will be accepted at this time. Fares will continue to be collected with Snapper on bus, and train customers will need to clip themselves.
- Do not leave any passengers behind
- Saturday timetables will continue, with some additional services at Alert Level 3
- You will not be disadvantaged in your pay

Metlink will continue to carry out its deep cleaning regime.

Finally, a huge thank you for all the amazing work you do <u>for our customers</u>, and communities, every day.

metlink.org.nz | 0800 801 700

Transport Committee 9 September 2021 Report 21.346

For Decision

LET'S GET WELLINGTON MOVING - CITY STREETS - INDICATIVE BUSINESS CASE

Te take mō te pūrongo Purpose

1. To advise the Transport Committee (the Committee) of the Let's Get Wellington Moving (LGWM) – City Streets, Indicative Business Case (IBC).

He tūtohu Recommendations

That the Transport Committee:

- 1 **Approves** the Let's get Wellington Moving City Streets, Indicative Business Case provided in Attachment 1 to this report.
- 2 **Notes** that Greater Wellington Regional Council's partner share of costs to undertake the work in the next phase has been allowed for in the 2021-2031 Long Term Plan.

Summary

- 2. City Streets is an important package within the LGWM Programme, it sets out to develop a package of public transport, walking, cycling, and amenity improvements to complement and support the larger elements of the LGWM programme such as Mass Rapid Transit (MRT) and Strategic Highway Improvement (SHI) with a focus on the central city and key multi-modal corridors connecting the central city with sub-urban centres. City Streets has a key role in driving mode shift and moving more people with less vehicles.
- 3. A team, utilising partner resource has undertaken significant network analysis to identify and prioritise corridors for investment.
- 4. The strategic case for the IBC sets out the problems we are trying to fix and list the investment objectives and how these link back to the wider programme objectives.
- 5. The wider LGWM programme envisages a spend of \$350 million on the City Street package, the team have identified a list of projects/corridors that provides the best overall fit with the investment objectives for the funding available.
- 6. The recommended programme sets out tranches of activities to ensure that those projects with the greatest benefits are assured of being constructed ahead of those with slightly less return.

- 7. In addition to recommending a programme for investment, the business case sets out the details for the next phase, it is envisaged that the planning activity be undertaken utilising a single stage business case (SSBC) that is right sized for the degree of complexity. In order to prioritise routes significant analysis has already been undertaken on all corridors and in many cases, there is unlikely to be complex option assessments required.
- 8. In addition to the technical analysis required at the next phase, community engagement will be significant, as the next phase will include all necessary approvals of parking and lane use restrictions needed.
- 9. The partnership agreement for the programme requires that all business cases gain partner approval, the LGWM Board have endorsed the IBC. Approval of the recommendations of this report will meet this requirement.

Te tāhū kōrero Background

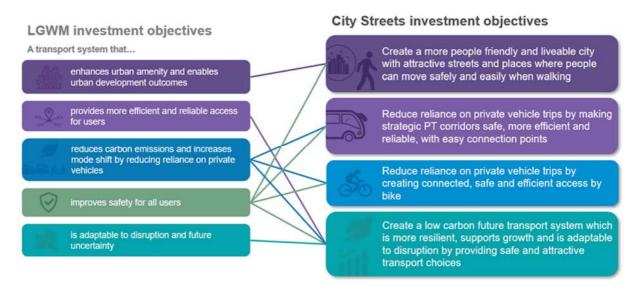
- LGWM is a joint initiative between Wellington City Council (WCC), Greater Wellington Regional Council, and Waka Kotahi New Zealand Transport Agency (Waka Kotahi), together with Mana Whenua partners Taranaki Whānui ki Te Upoko o Te Ika and Ngāti Toa.
- 11. The focus of the LGWM programme is from Ngauranga Gorge to Miramar including the central city, the Wellington Urban Motorway, access to the port, and connections to Wellington Hospital and the airport. A number of core multi-modal corridors connecting the central city with suburbs to the north, south, east, and west are also covered by parts of the programme. This area has an important role for both local and regional journeys.
- 12. A draft LGWM programme business case was completed in 2018, which identified a Recommended Programme of Investment (RPI).
- 13. Discussions with central government about funding, financing, and staging led to the announcement of an Indicative Package (IP) with central government funding in May 2019.
- 14. On 26 June 2019, Council endorsed the LGWM long term vision and RPI, welcomed the government funding announcement as part of the IP, and agreed to move to the next stage of investigations (Report 19.258 LGWM programme endorsement, funding and next steps). WCC similarly endorsed the LGWM vision in June and the Waka Kotahi Board subsequently endorsed the programme's next steps.
- 15. In December 2019, Council agreed the funding and partnering approach for the next phase (Report 19.485 Funding and partnering for the next phase of LGWM). WCC and Waka Kotahi similarly endorsed the funding and partner agreement.
- 16. The LGWM programme includes substantial investment in public transport, walking, cycling and amenity/place making to provide enhanced travel choice with a strong focus on the central city and effective and efficient connections between the central city and key sub-urban centres. This investment is collectively known as the City Streets programme.

- 17. In mid-2019 WCC and Greater Wellington Regional Council jointly undertook a planning exercise to collaboratively deliver a package of bus priority measures to improve reliability and travel times for bus users. The resulting Bus Priority Action Plan (BPAP) was endorsed by both Councils in December 2019 (Report 19.486 Joint programme to improve the reliability of travel times for buses) and agreed that it would be folded into the multi-modal LGWM City Streets package for implementation.
- 18. Over the last 18 months the programme has developed an IBC that defines the City Streets package and sets out the case for investment along with the economic assessment of a recommended package of options and an indicative implementation strategy for the next steps.
- 19. Partner approval from both Wellington City Council and Greater Wellington Regional Council is required before seeking approval from the Waka Kotahi Board to the business case and release of funding from the national land transport fund for subsequent phases.

Te tātaritanga Analysis

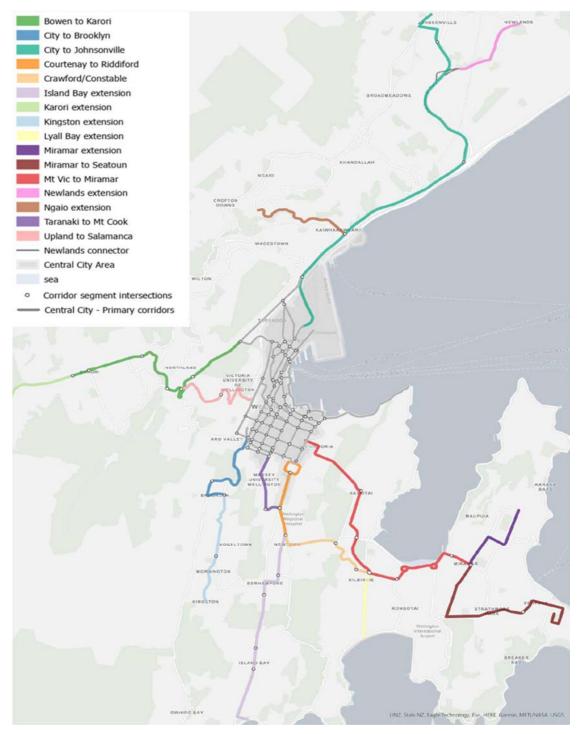
Objective of the Indicative business case

- 20. The City Streets IBC (Attachment 1) sets out to develop a package of public transport, walking, cycling, and amenity improvements to complement and support the larger elements of the LGWM programme such as Mass Rapid Transit and Strategic Highways Improvements with a focus on the central city and key multi-modal corridors connecting the central city with sub-urban centres.
- 21. A number of complementary investigations and analysis completed by the partners have been brought together in this IBC to develop the recommended package. This includes WCC's Place and Movement Framework, Network Operating Framework, and the Bus Priority Action Plan (BPAP).

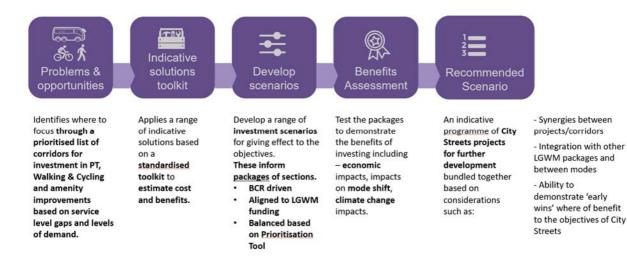

Partner involvement

- 22. Unlike other packages within the LGWM programme, the City Streets package has used partner resource for much of its development, including the WCC's Transport Planning Manager seconded into the programme to lead the package development. Other partner staff included those from Greater Wellington's Metlink Group, and Economic, Transport and GIS analysist from within WCC's Transport planning team.
- 23. Each of the partner organisations provide subject matter experts that form a technical advisory group (TAG), in addition to officers that were imbedded into the programme, the TAG members have provided valuable input to the development of the IBC including recently completing a comprehensive review of the completed document.

Strategic case


24. City Streets investment objectives have been developed to be well aligned with the wider LGWM programme objectives but adapted to reflect of the unique contribution that City Streets will make to the wider programme. This includes a strengthened focus on the connection between liveability/place and walking as shown below.

- 25. Recently the LGWM programme undertook an exercise with partners to review the investment objective weightings, this exercise updated some of the wording and strengthen the need to reduce car reliance and associated reduction in carbon. The City Streets team has not formally reviewed the strategic case in light of the changes, however our advice is that in resetting the objectives and weighting it is only likely to strengthen the case for investment in City Streets and will have no material difference in the recommended package for investment.
- 26. The diagram below reflects the updated programme investment objectives and how they relate to the City Streets investment objectives:


Identifying corridors for investment

- 27. The City Streets IBC sets out the case for investment in an optimal city wide, multi-modal package of interventions to maximise a shift away from single occupancy vehicles and provide an indicative implementation strategy for the next phases.
- 28. Work undertaken as part of the BPAP to identify where the greatest opportunity to improve bus travel times and reliability identified eight key corridors, generally these integrated well with the wider LGWM Programme with the exception of Johnsonville, Ngauranga, Karori, Berhampore and Island Bay.
- 29. The wider City Streets geographical scope also encompasses the Wellington City Council's strategic cycling network.
- 30. The map below shows the geographical scope of the corridors investigated for investment by City Streets.

Methodology

31. The high-level five stage methodology adopted for City Streets IBC is shown below. In broad terms, the methodology is based on assessing current levels of service against aspirational levels of service for walking, cycling, public transport, place-making and safety. Investment is prioritised towards the areas with the largest levels of service gap which have the potential to influence the largest number of people.

- 32. While it was relatively easy to identify how bad corridors are for each user type and to calculate the overall existing performance by corridor, it is more difficult at a high level to assess benefits without undertaking full option assessment on each corridor (to be completed as part of the next phase). The team has developed what it has referred to as the indicative solution toolkit.
- 33. The toolkit sets out a theoretical solution on those corridor sections that demonstrate poor performance. Actual interventions for specific projects will need to be investigated more thoroughly at the detailed business case phase. The cost of the solution is calculated, including an allowance for the engineering difficulty. From this we can quantify the likely benefits and likely cost of the theoretical solution.
- 34. The solutions are grouped into five categories of interventions with broad subcategories and options below them:

Bus priority interventions	Pedestrian interventions
Bus stop improvements	Footpath improvements
In-lane bus priority measures	Intersections
Corridor improvements	Midblock crossings
Signal improvements	Signal improvements
	Accessways
Cycle interventions	General safety interventions
Midblock cycling facilities	Traffic calming
Intersections	Intersections
Midblock crossings	
Signal improvements	
Accessways	
Amenity improvements	
Pedestrian facility upgrades	
Amenity upgrades for transport users	

- 35. Network performance of each corridor has been assessed against six criteria:
 - Public Transport Safety
 - Walking
 Amenity/place
 - Cycling
 Growth
- 36. The factors considered in the tool are shown in the table below:

Prioritisation criteria	Factors considered	
	On key suburban corridors	In the city centre
Public transport level of service	 Bus travel time delay Bus travel time variability Bus patronage 	
Cycling level of service	 Cycling level of service Gradient Cyclist volumes 	 Cycling level of service Cycle permeability (one-way streets) Cyclist volumes
Walking level of service	 Walking level of service for pedestrians accessing bus stops Bus boarding and alighting volumes 	 Pedestrian delay Pedestrian severance Pedestrian permeability (lack of pedestrian connections between streets) Current and aspirational place values Pedestrian volumes
Amenity and place	 Aspirational place values for town centres 	Current and aspirational place values
Safety	 Collective and Personal Risk ratings Social cost of injuries Number of vulnerable user crashes 	
Access to support growth	 Planning for Growth estimated population 	ulation growth served by the corridor

- 37. To enable an assessment of the Amenity and Place criteria the team used place scores from the December 2019 Place and Movement Framework. This framework needs to be developed further, WCC and LGWM are working collaboratively to create a framework that can be used for future phases of both LGWM and WCC projects to ensure a common view of amenity and place.
- 38. Currently Gehl Architects are developing a Public Space Public Life Study, this work is being funded from the City Streets package as it benchmarks the corridors and is expected to provide valuable insights that will then be used to develop the aspirations that will feed into the updated place and movement framework.

Developing scenarios

39. Using the network section scores from the six criteria, the toolkit solution and indicative cost, a range of investment scenarios were developed. Scenarios were tested by applying different combinations of weightings to the six prioritisation criteria scores.

- 40. Irrespective of the scenario, the indicative toolkit solutions identified on the corridor segments remain the same, they take a multi-modal approach to addressing the most appropriate issues across all modes based on wider levels of service considerations.
- 41. The purpose of developing the scenarios through the prioritisation process is to provide a consistent and systematic basis on which to compare competing multi-modal and place-based issues. The scenarios are guides that will inform the overall prioritisation of activity for the City Streets IBC and assist in identifying a package of works that optimally delivers against the City Streets investment objectives. However, the prioritisation process is not a black box that dictates the overall prioritisation. There are other considerations that cannot be systemised but will inform the final priorities and, therefore, the final scenario package.
- 42. Seven investment scenarios were used to test different weightings and focuses, and then refined and optimised the best performing scenario to develop the recommended package.

Recommended package

- 43. The resulting recommended package is made up of 19 projects with a programme capital cost estimate (including contingency) of \$350 million and a BCR of 2.4 in conjunction with supporting studies and a programme of targeted improvements.
- 44. The recommended package proposes to treat 50 percent of the central city network and 46 percent of the public transport network in scope for City Streets. This covers parts of the network that currently have a ten-year social cost of injuries of around \$300 million.
- 45. The recommended programme is envisaged to lead to around 3,000 new daily cycle users and, through improvements to Public Transport reliability, over 4,000 new daily bus trips leading to mode share uplifts of 3.7 percent for trips from around Wellington city to the central city and a reduction in transport related CO2 emissions of over 1,000 tonnes per annum. City Streets has a key role in driving mode shift and moving more people with less vehicles.
- 46. The City Streets IBC has been developed as a stand-alone business case except for work being undertaken on the Golden Mile, Thorndon Quay and Hutt Road. Many of the corridors identified for inclusion in the City Streets recommended package are also being considered as corridors for Mass Rapid Transit. At a wider LGWM Programme level integration between different packages is important and is being managed at that programme level. In some cases, corridors will not be progressed by City Streets but will be addressed by the MRT/SHI teams, in other cases it may be prudent for City Streets to provide a lower cost interim solution particularly for bus priority, cycling, walking and road safety until such time that MRT/ SHI mobilise the final corridor solution.
- 47. Integration with initiatives outside of the programme is also important, City Streets is at the heart of Wellington City's Strategic Cycle Network and will provide many of the active mode and public transport enhancements envisaged as part of the Te Atakura blueprint (2019).
- 48. The Te Atakura blueprint (2019) and implementation plan (2020) commits WCC to ensuring Wellington City becomes a net zero carbon city by 2050 including making the

most significant reductions by 2030. Transport emissions are responsible for over half of Wellington's emissions – thus is a key action area. Further, Wellington City Council has directed officers to prepare a report investigating a Wellington Fossil-Fuel Free Central City by 2025 to be reported back to its Councillors later in 2021.

Tranches

- 49. Funding allocated to the City Streets package is done so on an envelope basis, i.e. that it is capped at \$350 million with an expectation that we maximise the benefits that can be delivered from within the envelope.
- 50. The recommended package has been divided into tranches. Projects in the first tranche address higher priority sections in the network. Addressing these priority sections first will provide partners with the security that those projects with the greatest benefits stand the best chance of being completed within the budget envelope.
- 51. The estimate for those projects in the first tranche is \$180 million (including contingency/expected estimate, with 50% confidence P50), however this will change once we understand the impact of the final MRT/SHI route and scope early next year.
- 52. The business case calls for a review at the end of the first tranche planning activities to check that the assumptions used to select projects for the second tranche are still valid.
- 53. Attachment 2 to this report is a table with the recommended City Streets package with Tranche 1 and 2 activities including a high-level scope and estimate of next phase costs and overall construction estimate, noting that the overall package cost differs as it includes costs attributed to the wider programme.
- 54. The diagram below sets out activities that form Tranche 1. The colours denote those that can be progressed immediately and those that are dependent of MRT/SHI decisions.

Targeted improvements

- 55. It is acknowledged that all the project partners wish to move quickly towards delivery, however the next phase activities of planning and engagement will still need 12-18 months each before seeking approval to move towards design and then construction.
- 56. It is proposed in the interim to provide funding to allow for a roll out of targeted improvements on the city streets corridors. This will be incorporated into the LGWM three-year programme.
- 57. It is proposed to have two dedicated funds:
 - a The first will be targeted to Bus Priority and will pick up many of the "quick wins" identified in the Bus Priority Action Plan. This will be focused on those corridors that won't be addressed in the first tranche, for example, the Karori Corridor. We could expect the following types of interventions:
 - i Targeted bus priority at intersections
 - ii bus stop rationalisation (removal of some stops)
 - iii Hours of operation of clearways/bus lanes
 - b The second fund will be targeted to walking, cycling, amenity, and safety. The following activities could be expected:
 - i Timing changes at traffic lights
 - ii Hours of operation of clearways
 - iii Minor pedestrian improvements
 - iv Minor safety at high-risk intersections
 - v Interim cycle lanes
 - vi Cycle parking
- 58. Experience gained in the recent Waka Kotahi led Innovating Streets projects will be employed as part of the roll out of these targeted improvements, given that in many cases they are an interim solution on the pathway to permanence.

Reviews and approvals

- 59. Standard practice for any business case of this size is that it undergoes an independent peer review and an internal Waka Kotahi investment quality assurance (IQA) review.
- 60. Internally the IBC has been reviewed by the partner TAG group, and endorsed by the Programme Director and by the LGWM Board at their meeting of 3 August 2021

Next phases

61. Subject to business case approval and funding release the package will move into the next phase. It is recommended that the detailed planning and engagement for each of the corridors/projects be undertaken through a single stage business case (SSBC) and in some instances a single stage business case-lite (SSBC-lite).

- 62. Work is underway to engage suitable professional services for the next phase of developing single stage business cases for each project. This will mean that work can start as soon as funding is approved.
- 63. In the next phase it is expected that as part of completion of the SSBC/SSBC-lite that we have an explicit rationale for why change is needed, an understanding of the size of the benefits (and any dis-benefits), who is going to be affected, the cost to make changes and approval to all necessary traffic and parking changes (Traffic Resolutions).
- 64. The next phase will require a high level of community engagement embedded alongside the technical analysis for each corridor to ensure that approvals of the necessary changes at the end of the business case are provided in a timely manner to enable smooth progress towards delivery.
- 65. The next phase also includes the work to better understand integration opportunities and risk, including decisions to implement interim solutions on those corridors that may be significantly changed because of MRT/ SHI decisions.
- 66. We need to ensure that at a corridor level of investigation that we are fully integrated with other activities happening or being planned in that area for example we need to ensure planning in the Johnsonville area is integrated with the Johnsonville master planning exercise that is underway being led by Wellington City.
- 67. At a corridor level we also need to ensure that planning is integrated with the Wellington City Council cycleways programme, planning for growth and carbon reduction proposals.
- 68. Work in corridors also needs to be well connected and integrated with the work of Greater Wellington's Metlink Group. Changes in bus stop location or removal will need to be incorporated into the Metlink network. It is expected that the step change improvement in travel time and reliability of the Wellington City Bus Network will provide an opportunity to review the bus network in terms of number of buses, timetables and potential review routes to maximise the return on sections of the network that have increased bus priority.
- 69. The consequential review of the bus network is outside of the scope of City Streets and sits with Greater Wellington as part of our core business, however an allowance has been made within City Streets for the programme to support this work financially as required.
- 70. The council partners have included funding for the next phases of work expected over the next few years in their long-term plans using their existing rating tools.
- 71. The first three years of the City Streets package is expected to be \$42.8 million across all three partners.
- 72. Waka Kotahi is expected to fund the central government share from the NLTF for the next phase of work. This funding requirement is expected to be included in the National Land Transport Programme (NLTP).
- 73. Whilst there is an explicit LGWM programme work stream to provide funding partners with analysis to assist them in agreeing a more enduring agreement for cost allocation, for the next phases (SSBCs & targeted improvements) of the City Streets package the interim agreed funding arrangement, documented in schedule 5 of the 2020 LGWM

Relationship and Funding agreement (RFA) to allocate cost shares to funding partners, will be used.

74. The table below shows the P50¹ cost estimate for the recommended programme in base year values (\$2020) and do not account for inflation or discounting.

Cost source	Total expected project cost (\$)
SSBC	\$24,050,000
Main Consultancy/Contract	\$16,600,000
Additional Design (from Pre-imp)	\$1,370,000
Reviews & Audits (Safety, Peer, Cost)	\$520,000
Engagement / Consultation	\$3,060,000
City Streets internal management costs PM's etc	\$2,500,000
Pre-Implementation	\$21,895,000
Main Consultancy/Contract	\$18,242,500
Reviews & Audits (Safety, Peer, Cost)	\$632,500
Engagement / Consultation	\$530,000
City Streets internal management costs PM's etc	\$2,490,000
Implementation	\$238,055,000
Main Consultancy/Contract	\$234,530,000
City Streets internal management costs PM's etc	\$3,525,000
Contingency Property	\$3,000,000
Programme Contingency	\$63,000,000
Total Programme Cost	\$350,000,000

- 75. The City Streets team have followed a robust methodology to determine a package of improvements that delivers on the agreed investment objectives in the best possible way to ensure we are maximising our return on investment.
- 76. While there is significant opportunity to influence options and outcomes though the work being undertaken in the SSBC phase, there is limited ability to make changes to the current business case. Adding or removing projects at this stage will require significant rework and will require going back to define new objectives or scope for the business case.

¹ P50 used due to contingency applied to the cost estimate

77. Sequencing of the first tranche of projects can be altered, however at this stage we are expecting to have to review these because of other decisions being made early 2022 as part of the integrated MRT and SHI package. The final sequencing can then be assessed at that time.

Nga kōwhiringa Options

- 78. The City Streets team have followed a robust methodology to determine a package of improvements that delivers on the agreed investment objectives in the best possible way to ensure we are maximising our return on investment.
- 79. While there is significant opportunity to influence options and outcomes though the work to be undertaken in the SSBC phase, there is limited ability to make changes to the current business case. Adding or removing projects at this stage will require significant rework and will require going back to define new objectives or scope for the business case.
- 80. Sequencing of the first tranche of projects can be altered, however at this stage we are expecting to have to review these because of other decisions being made early next year as part of the integrated MRT and SHI package. The final sequencing can then be assessed at that time.

Ngā tūāoma e whai ake nei Next steps

- 81. Approval from the Council partners is being sought from WCC on 25 August and Greater Wellington Regional Council on 9 September 2021. Subject to these approvals the IBC will then be presented to Waka Kotahi for their approval. It is expected that the IBC and corresponding requests for funding for the next phase will be presented to the Waka Kotahi Board at their September 2021 Board meeting.
- 82. Professional services suppliers are being sought to undertake the work required to complete the business cases, contracts are expected to be ready to execute on approval of funding for the next phase.
- 83. First Tranche activities that the programme believes can be undertaken promptly and have limited community impact have been identified to form part of the three-year programme. The planning will remain with City Streets; however, the design and delivery will move to the 3-year programme and be reported on from there. These activities are:
 - a Bus Priority Targeted improvements Business Case approval to be sought in early 2022
 - b Other Targeted improvements Business Case approval to be sought in early 2022
 - c Johnsonville and Ngauranga Business Case approval to be sought in early 2023
 - d Bowen Street Business Case approval to be sought in mid-2022

- 84. The proposals for MRT and SHI are expected to be published later this year seeking wider community feedback. The feedback will enable partners to guide the programme team towards a preferred option that will then be used to complete the combined Indicative Business Case for those packages.
- 85. The City Streets schedule of corridors will be reassessed once decisions have been made on the MRT and SHI packages. It is likely that the number of and timing of all projects outside of the three-year projects will change. These changes will be confirmed through the LGWM Board and communicated to partners, stakeholders, and the wider community early next year.

Ngā hua ahumoni Financial implications

- 86. There are no direct financial implications associated with the decisions in this report. Funding for the next phase has been included in the 2021-2031 Long Term Plan based on initial estimates. This is in line with the cost estimate in the Indicative Business case.
- 87. These estimates will be reviewed as the programme progresses and any budget changes will come to council for approval.

Te huritao ki te huringa o te āhuarangi Consideration of climate change

88. Consideration of climate change is one of the key areas of focus for both LGWM and City Streets, the outcomes sought through the resultant projects will all contribute to addressing the transport related greenhouse gas emissions, by providing alternatives to private motor vehicles.

Ngā tikanga whakatau Decision-making process

89. The matter requiring decision in this report was considered by officers against the decision-making requirements of Part 6 of the Local Government Act 2002.

Te hiranga Significance

- 90. Officers considered the significance (as defined by Part 6 of the Local Government Act 2002) of this matter, taking into account Council's *Significance and Engagement Policy and Decision-making Guidelines*. Officers recommend that the matters are of low significance.
- 91. The decisions sought through this report are an interim step as part of a longer process to investigate, fund and deliver a package of bus priority, walking, cycling and amenity improvements over a number of years as part of the wider LGWM programme.

Te whakatūtakitaki Engagement

- 92. The Indicative Business Case has been developed to align with and deliver the LGWM programme and package level objectives, which were shaped by earlier public and stakeholder feedback. The work undertaken has used a robust technical process to make the case for investing in these improvements in Wellington City, and to identify initial corridor sequencing.
- 93. Comprehensive public and stakeholder engagement will be a key part of the next stage of the business case process, so that people are informed about, and can provide feedback on, the potential solutions and trade-offs within each multi-modal corridor.

Ngā āpitihanga Attachments

Number	Title
1	City Streets Draft IBC
2	City Streets Projects Table

Ngā kaiwaitohu Signatories

Writers	Dave Humm – LGWM Partner Lead, Greater Wellington				
	David Dunlop, Programme Director (Acting), LGWM				
Approver	Luke Troy – General Manger, Strategy				

He whakarāpopoto i ngā huritaonga Summary of considerations

Fit with Council's roles or with Committee's terms of reference

The terms of reference for this Committee includes:

- Oversee Council's involvement in jointly-managed regional and national transport programmes and projects, including Let's Get Wellington Moving and Project NEXT
- Consider and endorse business cases for submission to the NZ Transport Agency or other agencies on strategic transport projects with the potential for significant financial impact.

On this basis, a decision to endorse the LGWM City Streets Indicative Business Case is considered to fall within the remit of this Committee.

Implications for Māori

LGWM is working in partnership with iwi as part of the programme. An iwi partnerships working group has been established to help the programme appropriately consider mana whenua perspectives and support broader iwi engagement. Taranaki Whānui ki te Upoko o te Ika and Ngāti Toa also participate in the governance of the programme as members of the Let's Get Wellington Moving Governance Reference Group and their representatives participated in the joint partners workshop referenced in this report. The next phase will of project development will provide significantly more opportunity to consider mana whenua perspectives.

Contribution to Annual Plan / Long Term Plan / Other key strategies and policies

The LGWM programme is included in Council's Long Term Plan and the Wellington Regional Land Transport Plan (RLTP) 2015 and draft RLTP 2021.

Internal consultation

In preparing this report, consultation was undertaken with Greater Wellington officers from Strategy and Metlink Groups (along with LGWM partners) who have been involved in development of the indicative business case.

Risks and impacts - legal / health and safety etc.

No specific legal or financial risks have been identified.

Section 30 of the business case outlines the key project risks for the next phase of the project.

There are no health and safety considerations at this time.

12 August 2021

City Streets Indicative Business Case

Document control record

Document prepared by NB Consulting Ltd

Document control								
Report title		City Streets indicative business case						
Document code			Project number					
File path								
Client contact		Paul Barker	Client reference					
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver		
2.1	10 Dec 2020	Final Draft – Interim IBC	NC	BP				
3.0	21 May 2021	Final Draft - IBC	NC	BP				
4.0	18 July 2021	Final – IBC	NC	BP				
5.0	12 August 2021	Final IBC to go to partners for approval						
Current revision		0						
Approval								
Author signature			Approver signature					
Name		Neil Cree	Name					
Title			Title					

Executive Summary

Overview

Let's Get Wellington Moving (LGWM) is a joint initiative between Wellington City Council (WCC), Greater Wellington Regional Council (GWRC), and Waka Kotahi NZ Transport Agency (Waka Kotahi). The vision for LGWM is to build **a great harbour city, accessible to all, with attractive places, shared streets, and efficient local and regional journeys**. To realise the vision, the LGWM partners are working together to deliver a transformational city-shaping transport investment programme focused on enabling efficient and effective movement by moving more people with fewer vehicles.

The Programme Business Case (PBC), published in June 2019, identified Mass Rapid Transit and Strategic Highways as key components of the recommended a programme of improvements. Complementing and supporting those is a substantial programme of investment in public transport, walking, cycling and amenity/place making to provide enhanced travel choice with a strong focus on the central city and effective and efficient connections between the central city and key sub-urban centres. This package of public transport, walking, cycling, and amenity improvements is collectively known as City Streets.

WCC and GWRC has undertaken a substantial number of complementary investigations and analysis which are closely linked to City Streets and have been brought together in this IBC to develop the recommended package. This includes WCC's Place and Movement Framework, draft Network Operating Framework, and the Bus Priority Action Plan (BPAP).

This Indicative Business Case (IBC) recommends a \$350m investment (including contingency) in a package of public transport (bus), active mode, amenity and safety projects which is predicted to increase PT patronage and cycling by 4,000 and 3,000 trips per day respectively, reduce CO₂ emissions by 1,000 tonnes per year and improve over 12km of walking infrastructure. The package also has the potential to reduce the ten-year social cost of injuries by \$296m. Overall, the recommended City Streets package is envisaged to increase PT and cycling commute mode share from Wellington City to the

central area from 33.5% to 37.2% and increase the mode share for PT and cycling commuting within Wellington City from 19.8% to 22.4%.

Geographic Scope

The map shown outlines the geographical scope for City Streets. The scope is based on the LGWM programme area but expanded to include key strategic public transport corridors coming into and through the central city and the revised Central City area emerging from Planning for Growth. The geographic extent is consistent with the Wellington City Bus priority action plan and reflects the significant overlap between bus priority corridors, the strategic cycling network, and a potential mass rapid transit route. However, the geographic extent is larger than that approved by Waka Kotahi as shown.

The extension of the geographic scope to include additional Strategic Public Transport Corridors and extensions to the start/end of the routes is to ensure that we give effect to the overarching objective of City Streets and the LGWM programme of moving more people in fewer cars. By including key opportunities for mode shift in our long list we are not precluding potential opportunities emerging by limiting ourselves to a geographic scope based solely on the BPAP which had a single mode focus.

Any proposed investment outside of the Waka Kotahi approved scope as part of IBC funding approvals will require further approval.

Attachment 1 to Report 21.346

City Streets geographic scope relative to Waka Kotahi approved scope

Strategic Context

To deliver on the vision of LGWM five programme objectives have been agreed as shown below.

What outcomes are we seeking?									
Liveability	Access Access and mode shift		Safety	Resilience					
What are our objectives? A transport system that …									
Enhances urban amenity and enables urban development outcomes	Provides more efficient and reliable access for users	Reduces carbon emissions and increases mode shift by reducing reliance on private vehicles	Improves safety for all users	Is adaptable to disruption and future uncertainty					

LGWM investment objectives

The LGWM PBC identified the need to consider and improve Wellington's streets particularly in relation to journeys to, from, within, and through the central city and City Streets forms part of a suite of proposed integrated and holistic transport system improvements as shown below.

LGWM recommended programme summary

Critical to the vision and objectives of LGWM is an approach focussed on moving more people with fewer vehicles. Whilst Wellington already has a high number of people who use public transport and active modes when travelling into the central city the opportunity presented by LGWM and the City Streets package is to encourage even more people to travel via buses and active modes.

To improve access in, to and through the central city, the LGWM PBC identified approximately \$350 million of investment towards the City Streets package¹, as part of the indicative package. The indicative City Streets package and investment was subsequently endorsed by central and local government partners for further investigation through the business case process.

The problems and opportunities which City Streets aims to address have been investigated and prioritised and, to provide focus for the City Streets package three specific but complementary problem statements have been identified:

- Journeys are slow and less predictable, due to modes competing for space in constrained corridors, which is hindering the uptake of multimodal options further exacerbating poor safety and health outcomes along with declining transport levels of service.
- Wellington's future transport system and places will become less accessible and attractive with growing demand for travel through, from, and in the central city threatening Wellington's position as a great harbour city and the economic and cultural heart of the region.
- The attractiveness of public transport, walking and cycling relative to the private car is not yet sufficient to stimulate a step change in mode shift away from private vehicles.

Whilst the City Street business case is primarily focused on addressing these problems and improving the levels of service for public transport and active modes, as well as placemaking, as the package is implemented, there are several opportunities to integrate City Street solutions with the wider LGWM programme and other investment priorities of partner agencies, to deliver a holistic and multimodal transport system. These opportunities include:

- progressing City Street improvements ahead of major disruption from the LGWM Mass Rapid Transit and Strategic Highways packages, to ensure quality travel choices are available during construction of these major system upgrades.
- developing interim bus improvements along the agreed MRT route until the MRT is built to help improve the efficiency and attractiveness of bus journeys accessing the city. This will need to be carefully investigated as this can be problematic when it comes to reconfiguring such facilities for MRT with the associated need to potentially relocate a significant number of bus services.

City streets indicative business case

¹ LGWM PBC (21 June 1029) Table 18

- supporting improvements to the Golden Mile by providing additional public transport access within the central city via a second public transport spine parallel to the Golden Mile
- leveraging City Streets opportunities to support and enhance LGWM travel behaviour change package e.g., improved bus and cycling levels of service delivered through city streets and will support travel behaviour change efforts to reduce car use.
- aligning delivery with WCC Network Operating Framework to optimise the network for all users.
- other major infrastructure services works/planned upgrades in affected corridors to minimise disruption, optimise construction efficiencies and project benefits e.g., planned pipe upgrades by Wellington Water on Kent / Cambridge; PT or cycling improvements planned by WCC outside of the scope of City Streets.
- Continuing to re-build public trust and confidence in the City's bus services post Covid-19 and the network changes from 2018.

Over time, the City Streets package will enable Wellington's streets to be an even more integral part of the city — to safely connect people, places, and businesses, and provide character — as well as being spaces that people can enjoy and interact within as part of their everyday lives.

Supporting policies and strategies

In addition to LGWM there are four 'vision' level strategic influences on the future form of Wellington city and the transport system that supports it. These are:

• Wellington Regional Land Transport Plan 2015 (RLTP)² – which highlights the need to deliver "a safe, effective and efficient land transport network that supports the region's economic prosperity in a way that is environmentally and socially sustainable" and includes a whole of system regional target seeking a 40 percent increase in public transport and active mode share, a

35 percent reduction in transport generated carbon emissions, and a 40 percent reduction in deaths and serious injuries on our roads by 2030.

GET Wellington

 Our City Tomorrow (2017)³ – Developed by WCC with five city goals that have come from engagement with the community, and which headline all city strategies - Compact, Resilient, Vibrant and Prosperous, Inclusive and Connected, and Greener.

Let's

- Wellington City Spatial Plan (2020)⁴ A work in progress by WCC that provides direction and actions to the future shape of the city providing for projected growth. The emerging WCSP has been integrated into City Streets thinking in a manner which is consistent with the rest of the LGWM programme. The WCSP will also complement the Regional Growth Framework (RGF), which focusses on the wider Wellington region and the Horowhenua District, and is at an early stage of development, with a range of options being currently developed and assessed, before being tested with the wider community.
- Te Atakura blueprint (2019) and implementation plan (2020) commits WCC to ensuring Wellington City becomes a net zero carbon city by 2050 – including making the most significant reductions by 2030. Transport emissions are responsible for over half of Wellington's emissions – thus is a key action area. Further, Wellington City Council has directed officers to prepare a report investigating a Wellington Fossil-Fuel Free Central City by 2025 to be reported back to Councillors in September 2021.
- The City Streets goals of reducing single car occupancy, providing attractive walking, cycling and public transport alternatives and enhancing liveability of places are well aligned to the transport system outcomes and strategic priorities sought by Government Policy Statement and Waka Kotahi's associated strategies and plans, in particularly, Aratkai and Keeping Cities Moving: A plan for mode shift. The City Streets programme is explicitly

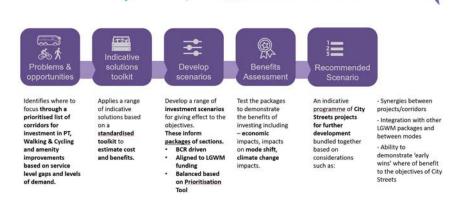
² <u>http://www.gwvt.nz/assets/Transport/Regional-transport/RLTS/RLTS2010-docs/WRLTS-2010-2040-Doco-WEB.pdf</u>

 ³ <u>https://wellington.govt.nz/your-council/projects/planning-for-growth/our-city-tomorrow</u>
 ⁴ https://planningforgrowth.wellington.govt.nz/spatial-plan

Wellington

referenced as a focus area in the Waka Kotahi Wellington regional mode shift plan.

Investment Objectives


The City Streets package has four investment objectives which are aligned to the overarching programme objectives. The investment objectives and alignment to the programmes are shown in the figure below.

Connections to the City Streets investment objective

Methodology

The five-stage methodology adopted for the City Streets IBC is summarised below. In broad terms, the methodology is based on assessing current levels of service against aspirational levels of service for walking, cycling, public transport, placemaking and safety. Different scenarios have then been developed which prioritises investment towards different areas of focus based on the scale of level of service gap and the potential people affected.

Overall City Streets Methodology

Let's

To develop different investment scenarios in a systematic way the study area was divided into 163 network sections and over 40,000 data points collected from over 15 data sources to build an assessment tool which considered levels of service for:

- Public Transport
- Walking
- Safety

- Cycling
- Amenity/place
- Growth

The factors considered in the tool are shown in the table below.

Summary of factors considered for each of the prioritisation criteria

Duiovitiootiov	Factors c	onsidered				
Prioritisation criteria	On key suburban corridors	In the city centre				
Public transport level of service	Bus travel time delayBus travel time variabilityBus patronage					
Cycling level of service	Cycling level of serviceGradientCyclist volumes	 Cycling level of service Cycle permeability (one-way streets) Cyclist volumes 				
Walking level of service	 Walking level of service for pedestrians accessing bus stops Bus boarding and alighting volumes 	 Pedestrian delay Pedestrian severance Pedestrian permeability (lack of pedestrian connections between streets) Current and aspirational place values Pedestrian volumes 				
Amenity and place	 Aspirational place values for town centres 	 Current and aspirational place values 				
Safety	 Collective and Personal Risk ratings Social cost of injuries Number of vulnerable user crashes 					
Access to support growth	 Planning for Growth estimation served by the corridor 	ated population growth				

Once collated and brought together in the prioritisation tool, the data — through a series of weightings — has been combined for each of the six key dimensions and assigned a score between 0 to 100, with 0 representing the lowest priority (no to minimal problems / opportunities on the segment) and 100 representing the highest priority (the most problems / opportunities relative to other locations

in the City Streets scope). This ensured that the scores for all six of the criteria used the same scale, where the location with the highest priority under that criterion had a score of 100.

Accompanying the prioritisation tool, a solutions toolkit has been developed. The purpose of the toolkit is to provide a template solution for deriving costs and benefits for the purposes of the IBC. Actual interventions for specific projects will need to be investigated more thoroughly at the detailed business case phase.

The solutions are grouped into five categories of interventions with broad subcategories and options below them:

Bus priority interventions	Pedestrian interventions
Bus stop improvements	Footpath improvements
In-lane bus priority measures	Intersections
Corridor improvements	Midblock crossings
Signal improvements	Signal improvements
	Accessways
Cycle interventions	General safety interventions
Midblock cycling facilities	Traffic calming
Intersections	Intersections
Midblock crossings	
Signal improvements	
Accessways	
Amenity improvements	
Pedestrian facility upgrades	
Amenity upgrades for transport	
users	

By bringing together the prioritisation tool and solutions toolkit the outcome is a populated baseline prioritisation tool which has level of service gap data and indicative interventions with associated costs for each of the 163 network sections included in the City Streets geographical scope.

Using the prioritisation tool, seven investment scenarios have been investigated:

Mellington

- Balanced options (A-C) treating all levels of service gaps broadly equally with three scenarios considered to test the sensitivity of the tool to incremental changes in the balanced weightings.
- Public transport corridor focus sections prioritised based on PT LoS gaps
- Walking / cycling corridor focus sections prioritised based on walking/cycling LoS gaps only.
- LGWM indicative funding a package built bottom up based on the indicative modal funding envelopes arising from the PBC. Two scenarios were tested:
 - Public transport corridors first where the worst performing public transport sections were selected first up to an indicative \$250m level of investment and then from the remaining sections the combined worst performing walking and cycling sections to an indicative investment level of \$100m.
 - Walking/cycling corridors first where the worst performing walking and cycling sections in the central city were selected up to \$100m with the remaining sections being prioritised on the basis of the worst public transport levels of service up to \$250m.

Irrespective of the weightings given to any dimension City Streets takes a multimodal approach to addressing the most appropriate issues <u>across all modes</u>.

When comparing the balanced options A-C, it was found the weightings for Options A-C had a relatively minor impact on the overall prioritisation of sections and so only one (Balanced option C) was taken forward. Similarly, when comparing the two LGWM indicative funding scenario options (PT first versus walking/cycling first) there was no fundamental difference in overall priorities observed. On that basis the LGWM indicative funding scenario with PT first was taken forward to more detailed analysis thus reducing the number of scenarios taken forward to a more detailed assessment to four.

The four scenarios taken forward to more detailed assessment and modelling against two funding thresholds of \$250m and \$400m were:

- Scenario 1 Balanced C
- Scenario 2 PT corridor focus

• Scenario 3 – Walking/Cycling corridor focus

Lets

• Scenario 4 – PBC aligned – PT first.

The result of a multi-criteria assessment for the four shortlisted scenarios is outlined below.

For each scenario, an indicative upper and lower bound package has been developed to inform the assessment of performance of each package. The upper and lower limits have been developed to indicative levels of investment of \$250m at the lower end and \$400m at the upper to align to the LGWM PBC for City Streets. Differences between scenarios have occurred due to the bundling of projects and the project costs, drawn from the toolkit, not precisely matching the upper and lower bound limits. The table highlights the best performing scenarios in both the high and low scenarios separately.

Shortlisted scenario multi-criteria assessment

			ario 1: ced (C)		io 2: PT idors		ario 3: orridors	Scenari Aligne	o 4: PB0 ed – PT
		Lower	Upper	Lower Upper		Lower Upper		Lower	Uppe
		Bound	Bound	Bound	Bound	Bound	Bound	Bound	Bound
Costs and benefits	Scenario cost (\$m):	237	376	246	390	239	399	249	400
oosts and benefits	Scenario BCR:	2.2	1.5	1.7	1.2	2.0	1.4	1.9	1.5
	\$m per km of investment:	8.7	8.5	7.7	8.2	9.9	8.9	7.0	8.1
		070(0.40/	====	000/	0.404	0.494	500/	070/
% of City Streets base network	PT network:	37%	61%	55%	82%	31%	61%	52%	67%
improved	Central city network:	50%	66%	21%	42%	47%	67%	49%	74%
	Total network:	37%	60%	43%	64%	33%	61%	48%	67%
City Streets investment objectives	MCA sub-criteria								
Create a more people friendly and liveable city with attractive streets and places where	Urban Amenity (Length of streets with amenity improvements, km)	15	20	10	13	12	17	12	18
people can move safely and easily when walking	Walking benefits (Quality of facility and delay reduction benefits \$m)	240	283	132	165	215	265	213	292
J.	Pedestrian levels of service (km of streets with improved walking infrastructure)	12	17	4	8	12	17	12	19
Reduce reliance on private vehicle trips by making strategic PT corridors safe, more efficient, and reliable, with easy connection	Average ratio of travel times between PT and car on strategic routes (Do minimum = 2.3)	2.0	1.9	1.8	1.8	2.1	1.8	1.9	1.8
points	PT network reliability (\$m) ¹	20.5	25.4	31.9	34.4	17.6	27.9	24.9	32.3
	Additional daily bus trips	2,700	3,500	4,500	5,000	2,400	4,000	3,400	4,600
Reduce reliance on private vehicle trips by creating connected, safe, and efficient	Cycling level of service (km of streets with improved cycling infrastructure)	18	29	16	29	19	32	20	32
access by bike	Forecast new daily cycle users	3,000	3,000	2,500	2,600	2,800	2,900	2,600	3,000
Create a low carbon future transport system which is more resilient, supports	Injury reduction potential - Ten-year social cost of injuries in treated sections (\$m)	289	400	278	381	219	358	307	409
growth and is adaptable to disruption by providing safe and attractive transport choices	PT and cycling commute mode share uplift from Wellington city to central area (base mode share =33.5%)	+2.9%	+3.3%	+3.4%	+3.8%	+2.7%	+3.7%	+2.8%	+3.6%
	PT and cycling commute mode share uplift within Wellington City (base mode share =19.8%)	+2.2%	+2.4%	+2.6%	+2.8%	+2.0%	+2.6%	+2.2%	+2.8%
	Transport related CO ₂ emissions (tonnes saved p.a.)	960	1030	970	1020	890	1050	950	1130

- Best performing sub-criteria at lower bound

- Best performing sub-criteria at upper bound

Present value of benefits estimated at 38% of direct PT user benefits through Bus Priority Action Plan PBC.

Recommended Package

Following the multi criteria assessment the PT corridor focussed package was selected but with refinement.

The MCA shows that all scenarios contribute to the outcomes of City Streets but with emphasis given to differing modes. The PT corridor focussed package performs well across several criteria at both lower and upper bound funding levels. This package is estimated to make the most significant overall contribution to total mode shift with the largest total predicted uptake of new bus users of around 4,500 - 5,000 per day. However, with the focus on enhancing the key public transport corridors into and through the central city for public transport and cycling, the scenario performs the weakest in terms of overall benefits to walking (in terms of total kilometres treated) with the Balanced scenario generally performing best against City Streets liveability goals. All scenarios perform similarly in relation to their potential to improve safety and is not a distinguishing factor.

The balanced scenario and PBC aligned scenario perform similarly with the balanced scenario performing better at lower funding levels than the PBC aligned scenario. Economically, the balanced scenario performs best overall.

At the level of analysis undertaken it is difficult to differentiate between the packages on the relative reduction of transport CO_2 emissions, although it is clear the more investment in public transport, walking and cycling the greater and more significant the reduction in CO_2 emissions is.

Scenario 2 makes the largest contribution to mode-shift which is central to the goals of LGWM programme and targets investment to the key movement corridors in the city which connects existing suburbs and future growth nodes of Wellington with the central city. The analysis demonstrates there is significant scope to enhance these corridors to drive greater mode shift to cycling and public transport.

As noted, a drawback of Scenario 2 as that the focus for investment in the Central City for walking and amenity is limited to the critical movement corridors only, many of which overlap with wider proposed activities in the LGWM programme, in particularly MRT. This is reflected in the MCA through the marked

reduction in walking benefits for Scenario 2 relative to the other scenarios. To address these deficiencies, Scenario 2 has been further developed to:

- Enhance the overall walking and cycling outcomes achieved by the package by including:
 - east-west walking and cycling connections within the Central City
 - Enhance walking improvements to key people-moving corridors.
- improve the overall value for money of the package by removing lower priority enhancements on the outer fringes of the bus network.
- Include relevant and high-priority integration considerations arising from delivery of the other LGWM components.
- Amalgamate corridor sections to form coherent 'projects'.

The resulting recommended programme consists of 19 projects supplemented by supporting studies and a programme of targeted improvements. The package has a mid-point (P50) total cost of \$284m (including business cases, preimplementation and implementation costs) and high-cost estimate of \$471.9m.

At the mid-point cost, the package has a BCR of 2.4. The midpoint cost differs marginally in comparison to the MCA analysis due to the decision to exclude the Quays route from the City Streets package at this time given its significant codependence on MRT decisions. The programme, along with proposed next steps following endorsement of the IBC are outlined in the table below divided into First Tranche and Second Tranche activities.

Those projects identified for delivery as part of the first tranche are further divided into:

• Projects for which there is a desire by the partners to commit to construction start in the first three years.

• Projects whose start would be conditional on final decisions around mode and route of MRT being confirmed.

For the purpose of the IBC activities have been defined as SSBC/SSBC-lite. Clarity on the level of detail required at the next stage, and hence the most appropriate business case pathway, will be determined during the scoping stage and engagement with project partners.

The recommended package is of a sufficient scale that it is considered to best manage partners' cost risk associated with the package and minimise potential adverse stakeholder feedback if programme components become unaffordable. The recommended package proposes to treat 50% of the central city network and 46% of the public transport network in scope for City Streets. This covers parts of the network that currently have a ten-year social cost of injuries of around \$300m. The recommended programme is envisaged to lead to around 3,000 new daily cycle users and, through improvements to PT reliability, over 4,000 new daily bus trips leading to mode share uplifts of 3.7% for trips from Wellington city to the central city and a reduction in transport related CO_2 emissions of over 1,000 tonnes per annum.

The table below demonstrates how City Streets contributes to the objectives of the wider LGWM programme using from the MCA process.

LGWM Investment Objectives	City Streets MCA measure	
A transport system that		
enhances urban amenity and enables urban	% of central city network treated	50%
development outcomes	Length of streets with amenity improvements (km)	12
	Walking benefits (Quality of facility and delay reduction benefits (\$m)	452.2
provides more efficient and reliable access for	Pedestrian levels of service - km of streets with improved walking infrastructure	12
users	Cycling level of service	24
	(km of streets with improved cycling infrastructure)	
reduces carbon emissions and increases mode	Average ratio of travel times between PT and car on strategic routes	1.9
shift by reducing reliance on private vehicles	(Do minimum = 2.3)	
	PT network reliability (\$m)	29.2
	Additional daily bus trips	4,095
	Forecast new daily cycle users	3,000
	PT and cycling commute mode share uplift from Wellington city to central area (base mode	3.7%
	share =33.5%)	
	PT and cycling commute mode share uplift within Wellington City (base mode share =19.8%)	2.6%
	Transport related CO ₂ emissions (tonnes saved p.a.)	1,080
improves safety for all users	Injury reduction potential - Ten-year social cost of injuries in treated sections (\$m)	296
is adaptable to disruption and future uncertainty	% of City Streets base network improved (total network)	43%

Indicative performance of recommended City Streets package against the LGWM investment objectives

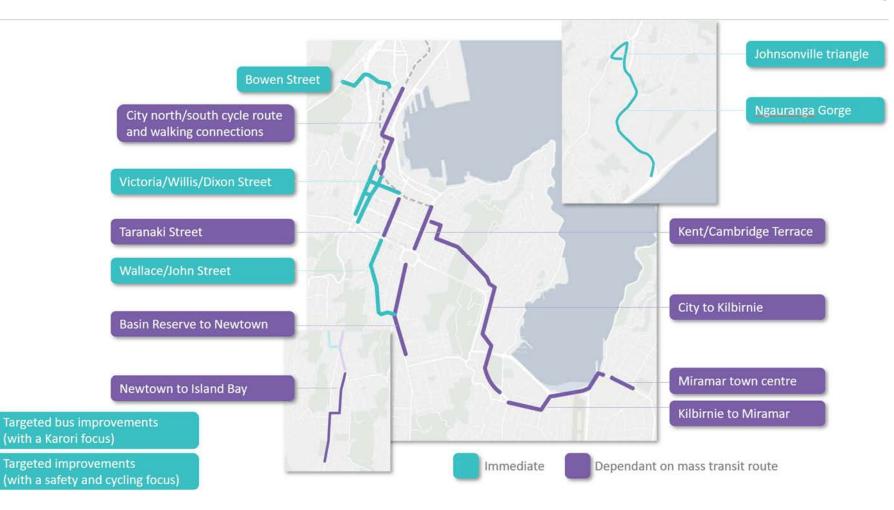
Recommended City Streets package

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
	Tranche 1 –	Immediate Sta	art with partner	desire to comm	it to construction start within 3 Years
Johnsonville Ngauranga Gorge	Johnsonville – Ngauranga PT Improvements SSBC/SSBC-lite	1.62	20.0	32.7	Bus route improvements between the Johnsonville Bus Hub and Hutt Road with associated cycling enhancements, <u>Walking</u> to improve bus stop access and safety improvements.
Targeted Improvements	BPAP Targeted Improvements SSBC lite	0.15	2.25		 Take the Bus Priority Action Plan recommendations regarding Bus Stop improvements and develop this into a cohesive programme with identified costs and benefits with a focus on commencing in Karori. The SSBC lite will: confirm which stops to rationalise (ensuring best strategic outcome is achieved and integration with wider LGWM and WCC/GW programmes has been considered) identify options to be assessed at each stop – will include bus stop relocation/rationalisation, bus stop enhancements (including geometry or customer experience improvements), pedestrian access <u>enhancements</u> Indicative costs and benefits of the programme Costed delivery programme SSBC lite to provide the basis of funding for pre-imp (define the final solutions) and implementation of the costed programme. Whilst an indicative estimate of \$2.25m has been assumed for the IBC, this could change as an outcome of the SSBC lite if it is found that there is a better value proposition in investing more targeted improvements.
	Other Targeted Improvements SSBC lite	0.15	9.0		Identifies a package of transport system targeted improvements which improve PT, Walking/Cycling, amenity and safety. The activities forming the package should be low cost, easily implementable with benefits known to outweigh costs. Activities to be considered include, amongst others: - timing changes at traffic lights - Bus phase / queue jumps at traffic lights - Hours of operation of clearways/bus lanes - Minor pedestrian improvements - Minor safety at high-risk intersections

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
					 Cycle parking The SSBC lite will: confirm the range of measures forming the targeted programme (ensuring best strategic outcomes are achieved and integration with wider LGWM and WCC/GW programmes has been considered) identify the scale of opportunity for improvement for each activity type and demonstrate the confirmed benefits associated with an activity type, setting out the necessary conditions for those benefits to be guaranteed to be realised provide indicative pre-implementation and and implementation costs for each activity type provide indicative pre-implemented programme of activity types taking into consideration: partners and sectors capacity to deliver activity type benefits and benefit realisation risk wider integration with City Streets, LGWM and WCC programmes SSBC lite will provide the basis of a funding application for pre-imp (define the final location and solution) and implementation of the costed targeted programme. Whilst an indicative estimate of \$9.0m has been assumed for the IBC, this could change as an outcome of the SSBC lite if it is found that there is a better value proposition in investing more targeted improvements.
City to Karori Tunnel	Bowen Street SSBC/SSBC-lite	0.69	9.0	16.1	PT, walking and cycling improvements along Bowen Street to align with WCC Kerb and Channel renewals scheduled for 2022.
			Tranche 1 -	- SSBC Immedia	te Start
Taranaki St to John St	Taranaki St to John St SSBC/SSBC-lite	1.60	17.0	28.1	Identify PT and cycling enhancements to include: - Bus stop improvements - Walking improvements to improve access to bus <u>stops</u>

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
					Targeted PT, Walking and Cycling improvements at key intersections
Willis/Victoria Walking/Cycling Connection Ghuznee Walking/Cycling Connection	South-West CBD Improvements SSBC/SSBC-lite	2.38	22.0	38.1	Provide a network of safety PT, walking, cycling and place improvements in the South-West CBD. Taking a network approach and using WCC's network hierarchy, identify the most appropriate user priorities and correlating corridor treatments to provide appropriate levels of service. The scope will need to take cognisance of the Golden Mile improvements, the potential impact of future MRT stations in the vicinity and Wellington City Council's
Dixon Walking/Cycling Connection					commitment to the <u>Poneke</u> Promise (<u>https://wellington.govt.nz/your-</u> council/projects/the-poneke-promise) actions for <u>Te</u> Aro Park.
Kilbirnie to Miramar cutting*	Shelly Bay Road to Troy St PT Improvements SSBC/SSBC-lite	0.33	2.0	11.3	Low impact bus priority measures city bound between Shelly Bay Road and Troy Street * Included in the package to address a known PT reliability improvement in a high priority bus route servicing the airport.
Bus network & operational Improvements	A specialist contract covering analysis and assessment of bus network and operational improvements as inputs into Tranche 1 SSBCs	500			This is a complementary activity to the programme of SSBCs to be owned and scoped by Greater Wellington in support of any bus planning activities that GW may require to undertake to inform the SSBCs. Bus network and operational expertise is a specialist service best sat outside of our traditional multidisciplinary consultants. All CS SSBCs should, as part of the options analysis process, consider network and operational improvements as well as engineering enhancements. Engineering enhancements could also have unconsidered knock-on consequences for the PT network and operations. This support contract provides enhances GW's work in this area as part of necessary inputs into the Tranche 1 SSBCs.
Quays Route (including second PT spine)	Progress Feasibility testing of the Northern CBD Network Operating Plan	250		×	LGWM has been developing the MRT and Golden Mile as separate projects and City Streets identifies Featherston Street as a key walking and cycling connection also. WCC has developed a Network Operating Hierarchy for

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
Featherston Walking/Cycling Connection					 the Northern CBD however, there has not been any network testing of the hierarchy in practice. This commission aims to: Model the network operating hierarchy with current LGWM findings to understand how the network operates. Identifying any challenges and proposing modal solutions to address these. Identify at a high level any engineering constraints on achieving the network hierarchy/LGWM outcomes proposing alternatives and options to achieve a balanced transport system
		Tranche 1 –	Conditional on	form and route	of MRT being confirmed
Basin to Newtown Kent/Cambridge and Basin	South Central SSBC/SSBC-lite	3.29	45.0	72.6	PT, walking and cycling improvements on the north end of Taranaki St, Kent/Cambridge and Adelaide and <u>Riddiford</u> Street. Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode.
Taranaki	-				
Miramar Town Centre	City to Miramar Town Centre SSBC/SSBC-lite	2.13	13.0	28.9	 PT, walking and cycling improvements between Kent/Cambridge and Miramar town centre with a focus on: City to Kilbirnie: Elizabeth St, Brougham St, Pirie St, Hataitai Bus Tunnel, Waitoa Rd, Moxham Ave, Kupe St/Hamilton Rd and Kilbirne Crescent Miramar Town Centre: Miramar Ave between Shelly Bay Road and Park
City to Kilbirnie (via Hataitai)					Rd/Hobart St. Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode.
Newtown to Berhampore	Newtown to Berhampore SSBC/SSBC-lite	1.90	26.0	41.4	Includes the bus route from Newtown town centre to Island Bay including Rintoul St, Luxford St and Adelaide Road between Luxford St and Dee St. Improvements to include PT and cycling enhancements, walking improvements to improve bus stop access, safety & operational improvements at key intersections.



Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
					Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode.
Quays Route (including second PT spine)	~	-	-	·	Scope to be incorporated into MRT following outcome of mode/route confirmation
Featherston Walking/Cycling Connection	Featherston Walking/Cycling Connection SSBC/SSBC- lite	2.09	14.0	21.7	 Scope to be informed by the WCC network operating hierarchy, confirmed MRT route and mode, Golden Mile investigations and City Streets Network Operating Hierarchy work indertaken as part of Tranche 1. Currently envisaged to include: cycling and walking enhancements along Featherston street between Mulgrave Street and Hunter Street walking improvements for pedestrians crossing Featherston St. safety improvements at key intersections
					Scope excludes side connections linking the Golden Mile to the waterfront which are expected to be taken forward by either the Golden Mile or MRT projects.
	Tranche 2 – Subjec	t to future fun	ding approvals	considering pro	ogress on Tranche 1 and programme review
The Terrace	Terrace SSBC/SSBC-lite	1.63	22.0	37.2	Includes consideration of bus, cycling and walking improvements including pedestrian crossing improvements and safety improvements at key intersections. Geographic scope covers the Terrace between Bowen Street and <u>Ghuznee</u> Street, and <u>Ghuznee</u> Street between The Terrace and Willis Street.

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
Karori Tunnel to Karori	Karori Tunnel to Karori SSBC/SSBC-lite	2.72	38.0	61.4	Includes the bus route from Karori Tunnel to the Karori town centre (Chaytor, Street and Karori Road between Chaytor Street and Chamberlain Road). To include the long-term future options for the Tunnel although improvements beyond operational enhancements are presently outside the scope of activities to be delivered by City Streets. Identified improvements include: - PT and cycling enhancements along the <u>route</u> - Walking improvements to improve bus stop <u>access</u> - Safety improvements at key intersections
Vivian Walking/Cycling Connection	Vivian/Tory Precinct SSBC/SSBC-lite	0.95	5.0	8.0	Geographic scope includes Vivian Street between Taranaki Street and Kent / Cambridge Terrace, and Tory Street between between Vivian Street and Courtenay Place and includes consideration of connections to Jessie Street, College Street, Lorne Street, and Tennyson Street. The SSBC purpose is to take a network approach and, by using WCC's network hierarchy, identify the most appropriate user priorities and correlating corridor treatments to provide appropriate levels of service and provide a safe and connected east- west cycling and walking network. The project builds from the earlier Ghuznee and Dixon walking / cycling connections to provide a connected network. Improvements include: - Cycling and walking enhancements along the route - Safety improvements at key intersections - Amenity improvements
City to Karori Tunnel	Bowen Street to Karori Tunnel SSBC/SSBC-lite	1.71	39.0	62.4	PT, walking and cycling improvements from <u>Tinakori</u> Road at Bowan Street, along Glenmore Street to Karori Tunnel.

Financing the recommended package

Whilst the LGWM programme has completed a comprehensive inventory of funding tools in use across the world, no decisions about any potential new funding tools have been taken and it is expected further investigations into new funding tools will occur ahead of the start of construction of higher cost components of the LGWM programme (which could include some City Streets components) as part of clarifying the level of spend the funding partners can commit to.

The Council partners have included funding for the next phases of work expected over the next few years in their long-term plans using their existing rating tools.

Waka Kotahi is expected to fund the central government share from the NLTF for the next phase of work. This funding requirement is expected to be included in the National Land Transport Programme (NLTP).

Whilst there is an explicit LGWM programme work stream to provide funding partners with analysis to assist them in agreeing a more enduring agreement for cost allocation, for the next phases (SSBCs & targeted improvements) of the City Streets package the interim agreed funding arrangement, documented in schedule 5 of the 2020 LGWM Relationship and Funding agreement (RFA) to allocate cost shares to funding partners, will be used.

The table below shows the P50 cost estimate for the recommended programme in base year values (\$2020) and do not account for inflation or discounting.

Pre-Implementation / Implementation costs for recommended programme

Cost source	Total expected project cost (\$)
SSBC	\$24,050,000
Main Consultancy/Contract	\$16,600,000
Additional Design (from Pre-imp)	\$1,370,000
Reviews & Audits (Safety, Peer, Cost)	\$520,000
Engagement / Consultation	\$3,060,000
City Streets internal management costs PM's etc	\$2,500,000
Pre-Implementation	\$21,895,000
Main Consultancy/Contract	\$18,242,500
Reviews & Audits (Safety, Peer, Cost)	\$632,500
Engagement / Consultation	\$530,000
City Streets internal management costs PM's etc	\$2,490,000
Implementation	\$238,055,000
Main Consultancy/Contract	\$234,530,000
City Streets internal management costs PM's etc	\$3,525,000
Contingency Property	\$3,000,000
Programme Contingency	\$63,000,000
Total Programme Cost	\$350,000,000

Commercial considerations

The City Streets programme is reasonably generic in nature and comparable to other PT, cycling, walking and amenity improvements that have been delivered in Wellington and across the country in urban environments. As such no capability constraints are envisaged. There could be market constraints within Wellington if activities are not programmed and procured within the wider LGWM context or without regard to wider sectors' procurement activities. It is anticipated that expertise will be required for City Streets in the areas of:

- Public engagement and communications
- Multi-modal design in constrained corridors

Whilst the activities forming the City Streets package are relatively standard in nature several approaches have been considered for procuring professional services for the next stages of development. As part of an initial procurement options assessment for delivery of the SSBCs in Tranche 1, four professional service delivery options have been considered with the conclusion that a biprocurement approach is preferrable as it is the optimal balance of

• Speed to procure

• LGWM ability to procure

QualityValue

- LGWM ability to manage
- Attractiveness to market
- Market capacity to respond

The bi-procurement approach involves selecting two suppliers for 2 predefined packages of work with the 'winning' supplier being awarded the main package and the runner up being awarded the second package. Both with the ability to vary in additional SSBCs (e.g., Tranche 2) dependent upon performance.

The final procurement approach will be confirmed in the City Streets procurement plan.

Next steps in delivery

Management of the City Streets programme will fall under the wider programme governance, management, funding and delivery arrangements of the LGWM programme.

Presently, many of those arrangements are in a state of flux as actions in response to the programme Health Check are resolved and embedded.

The next stage of the programme is the Tranche 1 SSBCs, studies and Targeted Improvements package with an internal team of Package Lead, Project Managers and technical specialists (providing internal advice across the programme) to be established.

Supporting the package lead and project managers will be a Technical Advisory group made up of technical expert representatives from partner organisations whose role is to provide guidance to the team as projects evolve.

The City Streets Package Lead will be accountable for the immediate next steps to progress to the SSBC stage of City Streets as outlined below.

Setting up the next phase of City Streets

Activity	Completion Date		
IBC & Funding Approvals			
IQA	July 2021		
Council & Waka Kotahi IBC Approvals and	August - October 2021		
Endorsement			
Funding Approval	October 2021		
Tranche 1 Scoping and Procurement			
Targeted Improvements SSBC Lite procured &	July 2021		
project commenced			
LGWM SSBC Process defined	August 2021		
SSBC Scoping complete	August 2021		
City Streets Procurement Plan & RFP approved	September 2021		
Tender Period	September/October		
	2021		
Tender Evaluation Period	October 2021		
Naming of Preferred Tenderer	Late October 2021		
Award of Contract	November 2021		
City Streets Team Establishment			
Wider City Streets Team resources confirmed and	October 2021		
appointed			

In conjunction with IBC approvals/endorsement it is desirable to obtain funding approvals to allow Tranche 1 activities to progress. This includes funding for all Tranche 1 SSBCs and for the implementation funding for the Targeted Improvements. The cost breakdown for the funding request is as follows:

- SSBC Development \$17.1m
- Targeted Improvements Pre-Implementation \$1.6m
- Targeted Improvements Implementation \$9.4m
- Contingency \$6m (21%)

Assessment against the Investment prioritisation method

Investment prioritisation is the basis for including an activity or combination of activities in the NLTP. Depending on the amount of funding available for an activity class, activities with a priority order above an investment threshold in that activity class are included in the NLTP. The Waka Kotahi Board sets the investment threshold based on the funds available for the activity class and the value and priority order of all proposed activities.

The Investment Prioritisation Method (IPM) for 2021–24 NLTP has three factors, namely:

- GPS Alignment
- Scheduling
- Efficiency

The City Streets Programme has been assessed by the project team against the IPM and it is recommended that the programme be given a profile of: H/H/L with an overall priority of 5 as outlined below.

- GPS Alignment High The package is envisaged to lead to between a 3% and 6% uplift in cycling and public transport usage.
- Scheduling High City Streets forms part of an agreed programme with delivery required to advance the objectives of the programme.
- Efficiency Low The BCR is estimated to be 2.4.

Table of contents

1.		Project introduction	1
	1.1.	Overview	1
	1.2.	Purpose of this report	1
2.		Strategic context	2
	2.1.	Let's Get Wellington Moving programme	2
	2.2.	City Streets in the LGWM PBC	4
	2.3.	City Streets – opportunities for integration	7
	2.4.	Relevant regional/local policies and strategies	7
	2.5.	Relevant national policies and strategies	8
3.		Problems, opportunities, and constraints	9
	3.1.	LGWM Programme problems, opportunities, and constraints	9
	3.2.	City Streets problems, opportunities, and constraints	10
	3.3. corrid	Problem 1: Slow, unpredictable, and unsafe multimodal journeys in constrained ors	11
	3.4. attrac	Problem 2: Future growth will further increase congestion affecting Wellington City's tiveness	18
	3.5. vehicl	Problem 3: Public transport, walking and cycling is not attractive compared to private es	e 24
4.		Investment objectives	27
	4.1.	LGWM programme objectives	27

	4.2.	City Streets investment objectives	27
5.		Economic case - overview	29
6.		Methodology overview	29
7.		Stage one – developing the network prioritisation tool	30
8.		Stage two – solutions toolkit	33
	8.1.	Application of the toolkit	33
9.		Stage three – develop investment scenarios	35
	9.1.	Long list to short list	36
10.		Stage four – shortlist assessment	37
	10.1.	Cost / benefits modelling approach	37
	10.2.	Multi-criteria assessment of the shortlisted scenarios	39
	10.3.	Conclusion from Stage 4	42
11.		Stage five – recommended package	43
	11.1.	Refining the preferred scenario	43
	11.2.	Optimising the programme	44
	11.3.	Variant assessment	46
12.		Recommended City Streets Package	48
	12.2.	Contribution to LGWM programme objectives	56
13.		Financial Case – LGWM programme wide context	57

13.1.	Funding - Partner Affordability	57	1.		Overall process for developing scenarios	85
13.2.	Capital cost assumptions	58	2.		Description of data sources	86
13.3.	Cost estimate	59	3.		Defining the corridor segments	87
13.4.	Cost Certainty	59	4.		Step 1: Identifying problems and opportunities	88
13.5.	Cashflow forecast	59		4.1.	Selecting the prioritisation criteria	88
14.	Commercial case - overview	62		4.2.	Scoring the prioritisation criteria	89
14.1.	Commercial considerations	62	5.		Step 2: Building the intervention toolkit	98
14.2.	Procurement approach – next phase	62		5.1.	Bus priority interventions	99
15.	Management case – Overview	64		5.2.	Cycle interventions	101
16.	Governance structure and project roles	64		5.3.	Pedestrian interventions	104
16.1.	Integration across City Streets	64		5.4.	General safety improvements	106
17.	Indicative programme and next steps	66		5.5.	Amenity improvements	108
18.	Role of Network Operating Framework	69		5.6.	Mitigation interventions	109
19.	Adapting to change	69	6.		Step 3: Identifying indicative solutions	110
20.	Stakeholder engagement	69		6.1.	Assumptions for integration with other LGWM projects	110
21.	lwi Partnerships	69		6.2.	Step 1: Identifying corresponding toolkit interventions	111
22.	Project management	70		6.3.	Step 2: Applying logical principles	114
22.1.	Cost management	70		6.4.	Step 3: Assessing the technical feasibility	115
22.2.	Change control and issues management	70	7.		Step 4: Cost estimates	115
23.	Key Risks	70	8.		Step 5: Developing scenarios	122
24.	Benefits realisation and lessons learnt	77		8.1.	Balanced scenarios	122
Appendix	A: Glossary of initialisations	79		8.2.	Mode-targeted scenarios	122
Appendix	B: Central City sections	81		8.3.	LGWM PBC-funding-aligned scenarios	123
Appendix	C: Strategic bus route sections	83	Ар	pendix	E: Level of service maps	124
Appendix	D: Prioritisation methodology	84	Ар	pendix	F: Prioritisation scenarios	137

A	ppendix	x G: Shortlisted Scenarios – Prioritised against funding levels	152
A	ppendix	κ Η: City Streets IBC cost benefit analysis methodology – Technical note	161
1.		Overview	162
2.		Modelling transport demands and benefits	162
	2.1.	Key benefit valuation assumptions	163
	2.2.	Public transport demand and benefits	165
	2.3.	Cycling demand and benefits	165

Δr	3.1.	Project overhead costs cl: Sensitivity test parameters	169 171
3.		Estimating indicative costs	169
	2.6.	Crash reduction benefits	169
	2.5.	General traffic demand and benefits	168
	2.4.	Walking demand and benefits	165

Table of figures

Figure 1: LGWM objectives2
Figure 2: LGWM Strategic approach and recommended programme of investment
Figure 3: LGWM programme components4
Figure 4: LGWM recommended programme summary4
Figure 5: City Streets geographic scope
Figure 6: City Streets geographic scope relative to Waka Kotahi approved scope
Figure 7: PT journey times relative to driving11
Figure 8: Wellington City's main transport corridors12
Figure 9: Average bus speeds – morning peak (7-9am)13
Figure 10: PT travel variability - morning peak (7-9am)13
Figure 11: Current cycle levels of service15
Figure 12: Current central city walking levels of service gap16
Figure 13: Levels of service gaps for safety17
Figure 14: Total crashes by severity (top) and DSI crashes involving active mode users, 2015 – 2019
Figure 15: Wellington City crashes involving buses - Courtenay Place, 2015 - 2019
Figure 16: Modelled change in PT and car metrics, 2013 base, 2036 do minimum trend, 2036 do minimum balanced
Figure 17: WCC residents' views on peak traffic volumes (2014-2020)23

Figure 18: Amenity Gap Score	24
Figure 19: Journey to work mode share (2018)	24
Figure 20: Wellington CBD Cordon Crossing Volumes, 2001-2018, 5yr rolling average inbound	
Figure 21: LGWM moving investment objectives	27
Figure 22: Connections to the City Streets investment objective	27
Figure 23: Overall City Streets Methodology	29
Figure 24: Central City Sections	
Figure 25: Process for calculating the prioritisation criteria scores	32
Figure 26: Approach to applying the Toolkit	34
Figure 27: Recommended scenario for refinement and analysis	43
Figure 28: Distribution of Benefits	47
Figure 29: City Streets Tranche 1	55
Figure 29: City Streets Tranche 1 Team Structure	65
Figure 30: City Streets Tranche 1 Indicative Programme	67
Figure 31: City Streets geographic scope	87
Figure 32: Process for calculating the prioritisation criteria scores	90
Figure 33: Guidance on the separation of cyclists and motor vehicles	

List of tables

Table 1: Let's Get Wellington Moving problems and opportunities	9
Table 2: City Streets problem statements and rationale	10
Table 3: Why buses are typically delayed	14
Table 4: Bus data for key journeys	14
Table 5: Indicative population projections by area / Territorial Authority	19
Table 6: Predicted increase in vehicle travel time and travel time reliability for key routes 2016-2026	
Table 7: Indicative percentage increases in bus travel times 2016-2026 ²⁶	21
Table 8: City Streets investment objectives and key performance indicators	28
Table 9: Summary of factors considered for each of the prioritisation criteria	31
Table 10: Prioritisation scenario weightings	35
Table 11: Demand and benefit modelling approach for indicative short-list scenario	37
Table 12: Standard valuation and benefit assumptions	38
Table 13: Shortlisted scenario multi-criteria assessment	40
Table 14: BCR sensitivity tests	41
Table 15: Incremental Analysis	42
Table 16: Baseline Programme (un-prioritised)	44
Table 17: Prioritised Project List and Programme Variant	45
Table 18: Prioritised Project List and Programme Variant MCA	46
Table 19 – Incremental analysis	47
Table 21 – Recommended City Streets Package	49
Table 20 – Indicative performance of recommended City Streets package against the LGWM investment objectives	56
Table 22 – Pre-Implementation / Implementation costs for recommended programme	59

Table 23 – City Streets draft cashflow forecast by NLTP period (\$m) (P50 excluding continger	,
Table 24 – Delivery options draft assessment	63
Table 25 – Setting up the next phase of City Streets	66
Table 26 – Critical/High Risks	70
Table 27: City Streets benefits realisation	78
Table 28: Alignment of City Streets investment objectives, GPS, and prioritisation criteria	88
Table 29: Summary of factors considered for each of the prioritisation criteria	89
Table 30: Danish cycling level of service scores	92
Table 31: Walking level of service scores on the key suburban corridors	93
Table 32: Levels of service for pedestrians crossing	94
Table 33: Walking delay scores	94
Table 34: Levels of service for pedestrians crossing and walking severance scores	95
Table 35: Amenity scores	95
Table 36: Safety _{risk} scores	96
Table 37: Social cost per injury	96
Table 38: Bus priority improvements	99
Table 39: Cycle improvements	101
Table 40: Pedestrian improvements	104
Table 41: General safety improvements	106
Table 42: Amenity improvements	108
Table 43: Mitigation interventions	109
Table 44: Intervention assumptions for integration with the wider LGWM programme	110
Table 45: Interventions at bus stops	112

Table 46: Interventions in the corridor midblock 112	
Table 47: Interventions at intersections and crossings	
Table 48: Crossing upgrades on key suburban corridors 114	
Table 49: Estimated costs for City Streets interventions	
Table 50: Estimated costs for enabling works 120	
Table 51: Estimated cost for second public transport spine (parallel to the Golden Mile)121	
Table 52: Estimated costs for minor intersection works	
Table 53: Prioritisation criteria weightings for the balanced scenarios	

Table 54: Prioritisation criteria weightings for the mode-targeted scenarios	. 123
Table 55: Demand and benefit modelling approach for indicative short-list option assessment	. 162
Table 56: Standard valuation and benefit assumptions	. 163
Table 57: Average value of travel time savings by mode	.164
Table 58: Estimation of reduced walking journey time benefits	. 166
Table 59: Estimation of quality of facility benefits	. 167
Table 60: Project overhead cost estimates	. 169

1. Project introduction

1.1. Overview

Let's Get Wellington Moving (LGWM) is a joint initiative between Wellington City Council (WCC), Greater Wellington Regional Council (GWRC), and Waka Kotahi NZ Transport Agency (Waka Kotahi). The vision for LGWM is to build **a great harbour city**, **accessible to all, with attractive places, shared streets, and efficient local and regional journeys**. To realise the vision, the LGWM partners are working together to deliver a transformational city-shaping transport investment programme focused on enabling efficient and effective movement by moving more people with fewer vehicles.

The Programme Business Case (PBC), published in June 2019, identified Mass Rapid Transit and Strategic Highways as key components of the recommended a programme of improvements. Complementing and supporting those is a substantial programme of investment in public transport, walking, cycling and amenity/place making to provide enhanced travel choice with a strong focus on the central city and effective and efficient connections between the central city and key sub-urban centres. This package of public transport, walking, cycling, and amenity improvements is collectively known as City Streets.

1.2. Purpose of this report

This Indicative Business Case (IBC) defines geographic areas of focus for public transport (bus), active mode, amenity and safety interventions for further development and delivery as part of City Streets. The IBC sets out the case for investment along with the economic assessment of example solutions along with an indicative implementation strategy for the next steps. The IBC does not go as far as undertaking detailed

investigations to confirm shortlisted or recommended options which will need to occur at the next stage of the business case process.

WCC and GWRC has undertaken a substantial number of complementary investigations and analysis which are closely linked to City Streets and have been brought together in this IBC to develop the recommended package. This includes WCC's Place and Movement Framework, draft Network Operating Framework, and the Bus Priority Action Plan (BPAP).

In parallel to City Streets, LGWM have been developing business cases for complementary work packages for Golden Mile, Hutt Road and Thorndon Quay, Mass Rapid Transit, Strategic Highways and Travel Demand Management. This business case outlines components of the City Streets package which support and integrate with the wider LGWM package, with those synergies factored into the recommended implementation strategy.

In preparing the strategic case, emphasis has been placed on conciseness and avoiding duplication or repetition of existing material, with references to supporting information provided, as necessary.

Strategic case

2. Strategic context

The strategic case aims to:

- set out the strategic context for City Streets.
- confirm the problems, opportunities, and benefits that the City Streets package is aiming to address and the supporting evidence base.
- confirm the investment objectives of the City Streets package.

2.1. Let's Get Wellington Moving programme

To deliver on the vision of LGWM⁵ of a great harbour city, accessible to all, with attractive places, shared streets, and efficient local and regional journeys, five programme objectives have been agreed (see Figure 1).

The PBC⁶ outlined the resultant *Recommended Programme of Investment* (RPI), which is made up of a series of integrated transport improvements and interventions that create a whole system transformation with a strong focus on people and the desire to enable an improved quality of life. Significant public and stakeholder engagement was undertaken to inform the programme and ensure that the transport outcomes are well integrated with land use and urban development outcomes. The programme is intended to act as a catalyst for quality and sustainable urban renewal and growth for the region.

A summary of the strategic approach applied to deliver the LGWM programme and respond to the investment and programme objectives is included in Figure 2. The approach to move more people with fewer vehicles is critical to the City Streets IBC as Wellington already has a high number of people who use public transport and active modes when travelling into the central city. The opportunity via LGWM and the City

Streets package is to encourage even more people to travel via buses and active modes.

What outcomes are we seeking?								
Liveability	Access	Carbon emissions and mode shift	Safety	Resilience				
	What are our objectives? A transport system that …							
Enhances urban amenity and enables urban development outcomes	Provides more efficient and reliable access for users	Reduces carbon emissions and increases mode shift by reducing reliance on private vehicles	Improves safety for all users	Is adaptable to disruption and future uncertainty				

Figure 1: LGWM objectives

⁵ <u>https://lgwm.nz</u>

⁶ <u>https://lgwm.nz/assets/Documents/Programme-Business-Case/LGWM-PBC-Report-21-June-</u> 2019-Draft.pdf

Moving more people with fewer vehicles

OUR STRATEGIC APPROACH

Make the most of what we have

- Optimise the transport system and make it safer
- Encourage people to walk, cycle, and use public transport more, and use cars less

2 Deliver a step change in public transport

- Substantially improve public transport capacity, guality and performance
- Encourage urban intensification near public transport

Improve journeys to, from and in the central city

- Prioritise people walking, cycling, and using public transport on key corridors
- Improve accessibility and amenity of places and streets
- Ensure those who need to use private vehicles can (e.g. deliveries)

Improve journeys through and around the central city

- Reduce conflicts between different transport users and traffic flows
- Increase the resilience and reliability of our transport corridors, especially to the hospital, port, and airport

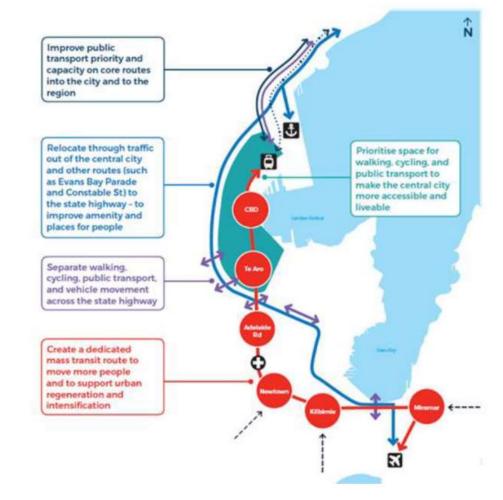
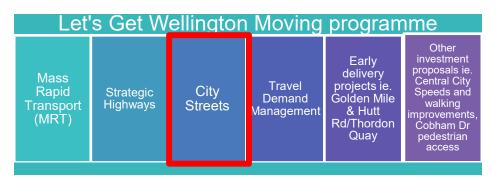
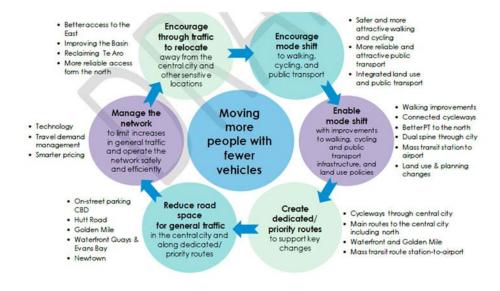


Figure 2: LGWM Strategic approach and recommended programme of investment

To achieve the LGWM outcomes and vision, the programme is split into four main packages, supplemented by early delivery projects, and other supporting investment proposals (see Figure 3).




Figure 3: LGWM programme components

Each component of the programme will enable or support transformational change in the way people live and move through and within Wellington. The optimal City Streets package will support and integrate with the other LGWM components, while also being a standalone package in terms of supporting and improving multi-modal access.

2.2. City Streets in the LGWM PBC

Wellington's streets are a critical component of the LGWM vision. The streets form an essential part of the city, connecting people, places, and businesses; enabling character; and providing spaces for people to interact with and enjoy.

The LGWM PBC identified the need to consider and improve Wellington's streets particularly in relation to journeys to, from, within, and through the central city. The LGWM recommended programme of investment (RPI) is based on integrated and holistic transport system improvements as shown in Figure 4.

Let's

Attachment 1 to Report 21.346

Figure 4: LGWM recommended programme summary

From the RPI, the core parts of the LGWM programme relevant to City Streets are:

- Better and safer walking access in the central city
- A connected and safe cycle network to/through the central city
- Better public transport priority to and through the central city
- Supporting destination place making where connected to transport related improvements

To improve access in, to and through the central city, the LGWM PBC identified approximately \$350 million of investment towards the City Streets package⁷, as part of the indicative package. The indicative City Streets package and investment was subsequently endorsed by central and local government partners. Given the high-level nature by which the City Streets components were investigated in the PBC, the

⁷ LGWM PBC (21 June 1029) Table 18

indicative investment provided should be viewed as an indicative starting guide for further investigation through the business case process, noting it was broadly attributed towards:

- public transport (\$250m) to and through the city to improve public transport mode share.
- a walkable city (\$70m) Accessibility and amenity improvements, setting safer speeds for vehicles, and walking improvements.
- connected cycleways (\$30m) Including cycleways on Featherston Street, Thorndon Quay, Courtenay Place, Dixon Street, Taranaki Street, Willis Street, Victoria Street, Kent and Cambridge Terraces and Bowen Street

The map shown, at Figure 5, outlines the geographical scope for City Streets. The scope is based on the LGWM programme area but expanded slightly to include key strategic public transport corridors coming into and through the central city and the revised Central City area emerging from Planning for Growth. The slightly modified geographic extent is consistent with the Wellington City Bus priority action plan and reflects the significant overlap between bus priority corridors, the strategic cycling network, and a potential mass rapid transit route. However, the geographic extent is larger than that approved by Waka Kotahi as shown in Figure 6.

The extension of the geographic scope to include additional Strategic Public Transport Corridors and extensions to the start/end of the routes is to ensure that we give effect to the overarching objective of City Streets and the LGWM programme of moving more people in fewer cars. By including key opportunities for mode shift in our long list we are not precluding potential opportunities emerging by limiting ourselves to a geographic scope based solely on the BPAP which had a single mode focus.

The quality of the first and last mile is as important in influencing mode shift to public transport as the public transport journey itself. Whilst the PBC only included place making within the Central City linked to transport enhancements the IBC has extended this to consider placemaking at both ends of the public transport journey as part of our long-list process.

The City Streets IBC does not explore place-making beyond where it is connected to transport related improvements, nor include scope items beyond transport related improvements. However, it does recognise, through consideration of partners

placemaking priorities, that LGWM partners have broader complementary placemaking aspirations which need to be considered at subsequent stages of project development and delivery including, wider place making scope, benefits and agreeing where costs lie. The extent of the actual potential scale of costs and benefits of placemaking (and their apportionment to transport related benefits versus wider city shaping benefits) will only become clear on conclusion of the more detailed SSBCs/SSBC-lites subsequent to this IBC with any necessary funding approvals obtained at that time.

Figure 6: City Streets geographic scope relative to Waka Kotahi approved scope

Let's

GET

Attachment 1 to Report 21.346

Figure 5: City Streets geographic scope

2.3. City Streets – opportunities for integration

The City Street business case is primarily focused on improving the levels of service for public transport and active modes, as well as placemaking, to help move more people with fewer vehicles. The indicative and prioritised package of interventions will help enhance the safe and accessible mode choices for people travelling into, from, and through Wellington. As the package is implemented, there are several opportunities to integrate City Street solutions with the wider LGWM programme and other investment priorities of partner agencies, to deliver a holistic and multimodal transport system. These opportunities include:

- progressing City Street improvements ahead of major disruption from the LGWM Mass Rapid Transit and Strategic Highways packages, to ensure quality travel choices are available during construction of these major system upgrades.
- developing interim bus improvements along the agreed MRT route until the MRT is built to help improve the efficiency and attractiveness of bus journeys accessing the City. This will need to be carefully investigated as this can be problematic when it comes to reconfiguring such facilities for MRT with the associated need to potentially relocate a significant number of bus services.
- supporting the Golden Mile improvements by providing additional public transport access within the central city via a second public transport spine parallel to the Golden Mile
- leveraging City Streets opportunities to support and enhance LGWM travel behaviour change package e.g., improved bus and cycling levels of service delivered through city streets and will support travel behaviour change efforts to reduce car use.
- aligning delivery with WCC Network Operating Framework to optimise the network for all users.
- other major infrastructure services works/planned upgrades in affected corridors to minimise disruption, optimise construction efficiencies and project benefits e.g.,

planned pipe upgrades by WCC on Kent / Cambridge; PT or cycling improvements planned by WCC outside of the scope of City Streets.

• Continuing to re-build public trust and confidence in the City's bus services post Covid-19 and the network changes from 2018.

Over time, the City Streets package will enable Wellington's streets to be an even more integral part of the city — to safely connect people, places, and businesses, and provide character — as well as being spaces that people can enjoy and interact within as part of their everyday lives.

2.4. Relevant regional/local policies and strategies

In addition to LGWM there are four 'vision' level strategic influences on the future form of Wellington city and the transport system that supports it. These are:

- Wellington Regional Land Transport Plan 2015 (RLTP)⁸ Developed by the Wellington Regional Transport Committee which highlights the need to deliver "a safe, effective and efficient land transport network that supports the region's economic prosperity in a way that is environmentally and socially sustainable". In developing the draft 2021 RLTP, the Wellington Regional Land Transport Committee has recently agreed whole of system regional targets seeking 40 percent increase in public transport and active mode share, a 35 percent reduction in transport generated carbon emissions, and a 40 percent reduction in deaths and serious injuries on our roads by 2030.
- Our City Tomorrow (2017)⁹ Developed by WCC with five city goals that have come from engagement with the community, and which headline all city strategies -Compact, Resilient, Vibrant and Prosperous, Inclusive and Connected, and Greener.
- Wellington City Spatial Plan (2020)¹⁰ A work in progress by WCC that provides direction and actions to the future shape of the city providing for projected growth. The Wellington City Spatial Plan (WCSP) draws on the National Policy Statement on Urban Development 2020 and Wellington City's commitment to be the first carbon zero city in Australasia (i.e., Te Atakura – First to Zero, 2019). The Spatial

⁸ <u>http://www.gw.govt.nz/assets/Transport/Regional-transport/RLTS/RLTS2010-docs/WRLTS-2010-2040-Doco-WEB.pdf</u>

 ⁹ <u>https://wellington.govt.nz/your-council/projects/planning-for-growth/our-city-tomorrow</u>
 ¹⁰ <u>https://planningforgrowth.wellington.govt.nz/spatial-plan</u>

Plan once finalised will inform the District Plan review and other implementation planning layers. The emerging WCSP has been integrated into City Streets thinking in a manner which is consistent with the rest of the LGWM programme.

 Te Atakura blueprint (2019) and implementation plan (2020) - commits WCC to ensuring Wellington City becomes a net zero carbon city by 2050 – including making the most significant reductions by 2030. Transport emissions are responsible for over half of Wellington's emissions – thus is a key action area. Further, Wellington City Council has directed officers to prepare a report investigating a Wellington Fossil-Fuel Free Central City by 2025 to be reported back to Councillors in September 2021.

The WCSP will complement the Regional Growth Framework (RGF), which focusses on the wider Wellington region and the Horowhenua District. The RGF aims to create a spatial plan that will describe a 30-year long-term vision for how the region will grow, change, and respond to key urban development challenges and opportunities. The RGF is at an early stage of development, with a range of options being currently developed and assessed, before being tested with the wider community.

2.5. Relevant national policies and strategies

There are a number of key national policies and strategies which City Streets is well aligned to through its focus on providing enhancements to a suite of modes and places in order to provide greater travel choices and influence the level of trip making in single occupancy vehicles. These policies and strategies include:

- Transport Outcomes Framework and Government Policy Statement on land transport 2021¹¹: guides transport investment in the land transport network. The Government sees that the purpose of the transport system is to improve people's wellbeing, and the liveability of places. It does this by contributing to five key outcomes:
 - Inclusive access: Enabling all people to participate in society through access to social and economic opportunities, such as work, education, and healthcare.

Let's

Attachment 1 to Report 21.34

- Healthy and safe people: Protecting people from transport-related injuries and harmful pollution and making active travel an attractive option.
- Environmental sustainability: Transitioning to net zero carbon emissions, and maintaining or improving biodiversity, water quality, and air quality.
- Resilience and security: Minimising and managing the risks from natural and human-made hazards, anticipating, and adapting to emerging threats, and recovering effectively from disruptive events.

The GPS 2021 proposes to prioritise transport investment in safety; better travel options in our towns and cities; greenhouse gas emission reductions and improved freight connectivity.

Supporting the GPS investment priorities, Waka Kotahi have outlined additional detail through other strategies and plans such as:

- Arataki¹² is the Waka Kotahi ten-year view of what is needed to deliver on the Government's current priorities with a focus on improving urban form, transforming urban mobility and significantly reducing harms as well as tackling climate change and supporting regional development.
- Keeping Cities Moving: A plan for mode shift¹³ is the Waka Kotahi plan to deliver on social, environmental, and economic outcomes by growing the share of travel by public transport, walking and cycling. As a key deliverable of this national plan, Waka Kotahi has recently led the development of a Wellington regional mode shift plan, with input from key central and local government partners.

The City Streets goals of reducing single car occupancy, providing attractive walking, cycling and public transport alternatives and enhancing liveability of places are well aligned to the transport system outcomes and strategic priorities sought by Government. The City Streets programme is explicitly referenced as a focus area in the Waka Kotahi Wellington regional mode shift plan.

[•] Economic prosperity: Supporting economic activity via local, regional, and international connections, with efficient movements of people and products.

^{11 &}lt;u>https://www.transport.govt.nz/multi-modal/keystrategiesandplans/gpsonlandtransportfunding/gps-2021/</u>

¹² <u>https://www.nzta.govt.nz/planning-and-investment/planning/arataki</u>

¹³ <u>https://www.nzta.govt.nz/walking-cycling-and-public-transport/keeping-cities-moving/</u>

3. Problems, opportunities, and constraints

The following section sets out the case for investment in City Streets. It confirms the specific problems and opportunities which City Streets is aiming to address and frames them within the wider LGWM PBC problems and opportunities.

3.1. LGWM Programme problems, opportunities, and constraints

The LGWM PBC identified several problems based on various causes, effects, consequences, and opportunities relating to Wellington's transport system as shown in Table 1. The problems and opportunities identified through the PBC helped frame the strategic responses that were assessed and included in the RPI.

Table 1: Let's Get Wellington Moving problems and opportunities

Problems – causes	Problems - effects
 Growing demand for travel to, from, through, and within the central city Transport modes competing for limited space on constrained corridors Cross-directional movement creating conflicts between movements and modes 	 Poor and declining levels of service Increasing congestion and unreliable journey times Safety issues especially for active modes
Problems – consequences	Opportunities
 Reduced amenity (e.g., noise, pollution, and severance) for people living, visiting, and working in the central city Lack of transport system capacity, particularly on rail and bus services, constraining Wellington's growth¹⁴ Slower and less predictable travel time for journeys to, from, within, and through the central city Increase in disrupted journeys for people and freight and slower recovery Deaths and serious injuries, especially for pedestrians and cyclists 	 Enhance travel choice for access to, from, within, and through the central city Make city streets more attractive and safer places to be Shape urban growth and activate urban regeneration Support increased productivity Improve community health and wellbeing Support enhanced environmental outcomes

¹⁴ Since adopting the LGWM PBC in 2019, the evidence base continues to evolve, resulting in a more nuanced understanding of the problems, particularly with respect to bus capacity. Subsequent

analysis suggests bus capacity issues centre primarily around physical capacity constraints on the Golden Mile, as noted under Problem Two in the Strategic Case.

Let's GET MOVING

3.2. City Streets problems, opportunities, and constraints

While the LGWM PBC problems, opportunities, and investment objectives act as a rationale for the overarching programme, how they apply to the specific context of City Streets needs to be considered, particularly as the evidence base for the programme as a whole, and the related packages, continues to evolve.

To provide focus for the City Streets package, the PBC problem statements have been refined to be specific to City Streets. The problem statements developed for the City Streets IBC are shown in Table 2.

Table 2: City Streets problem statements and rationale

City Streets problem statements	Rationale
Problem 1 Journeys are slow and less predictable, due to modes competing for space in constrained corridors, which is hindering the uptake of multimodal options further exacerbating poor safety and health outcomes along with declining transport levels of service.	The problem statement reflects the priority cause of competing space, the top two effects of unreliable journey times and declining LoS, and the primary consequence of slower and less predictable travel time. The relative breadth of this problem enables us to address declining levels of service in the widest sense including aspects such as PT capacity and safety.
Problem 2 Wellington's future transport system and places will become less accessible and attractive with growing demand for travel through, from, and in the central city threatening Wellington's position as a great harbour city and the economic and cultural heart of the region.	The problem talks explicitly to the amenity and place components of the LGWM vision which are embedded in the PBC, enabling the exploration of amenity and place within the central city while acknowledging the potential of the future transport system. The future opportunity that LGWM provides in terms of transformational change and leveraging off other core components (i.e., MRT, SH activities) will be delivered through the City Streets IBC.
Problem 3 The attractiveness of public transport, walking and cycling relative to the private car is not yet sufficient to stimulate a step change in mode shift away from private vehicles.	The quality of the PT journey and walking and cycling experience is included in this problem, in a way that is not captured in the previous two problem statements. The quality of the experience is in addition to the tangible journey time and reliability issues identified in Problem One. The breadth of 'attractiveness' relative to the listed modes enables a broad exploration of potential solutions.

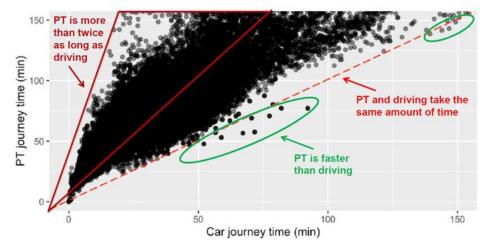
3.3. Problem 1: Slow, unpredictable, and unsafe multimodal journeys in constrained corridors

Journeys are slow and less predictable, due to modes competing for space in constrained corridors, which is hindering the uptake of multimodal options further exacerbating poor safety and health outcomes along with declining transport levels of service.

Due to Wellington's harbour and hill topography, the transport corridors accessing the central city and key regional destinations are limited in number. While Wellington's compact urban form has helped to encourage relatively high use of public transport, walking, and cycling as modes of travel, this also means that all modes share the same constrained corridors as shown in Figure 8¹⁵. Many of these corridors are operating at or above capacity.

Further exacerbating the impacts of a constrained transport system, Wellington's transport networks have minimal built-in resilience for planned and unplanned events such as crashes, vehicle break downs, roadworks, rail service outages, and extreme weather events.

3.3.1. Bus journeys are slow and unpredictable due to modes competing for space


Buses are a critical component of Wellington's transport system to enable people to move and access social and economic opportunities within Wellington City as shown below.¹⁶

¹⁵ Combined modes in the Wellington City Network operating framework (NOF).
 ¹⁶ Bus journeys shown are pre covid-19 levels, and routes have been updated to reflect Metlink's bus amendments of 25 October 2020. Infographic reference: Bus Priority Action Plan, 2019.

Figure 7 shows travel times by public transport relative to driving for origin / destination pairs across the region. This highlights that:

- in a very few instances taking public transport is slightly faster than driving or takes about the same amount of time. However, in all these instances, this is by train rather than bus.¹⁷
- for nearly all journeys, taking the bus is slower than driving.
- for around 50 percent of journeys, the bus is at least twice as slow as driving.

Figure 7: PT journey times relative to driving¹⁸

Analysis undertaken as part of the recently completed BPAP identified slow and variable bus travel times on several bus corridors. As an example, Figure 9 and Figure 10 show average bus speeds and peak time variability for the morning peak (7-9am) March 2019.

¹⁷ During off-peak, the lower frequency of train services can extend the duration of door-to-door journeys and reduce the comparative advantage of train travel.
 ¹⁸ Wellington transport strategic model outputs, 2013

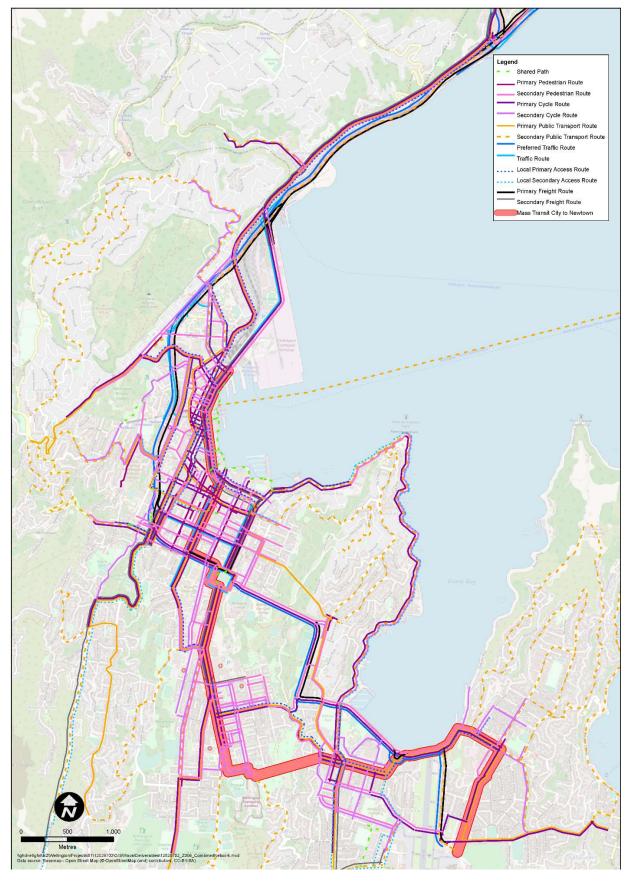


Figure 8: Wellington City's main transport corridors

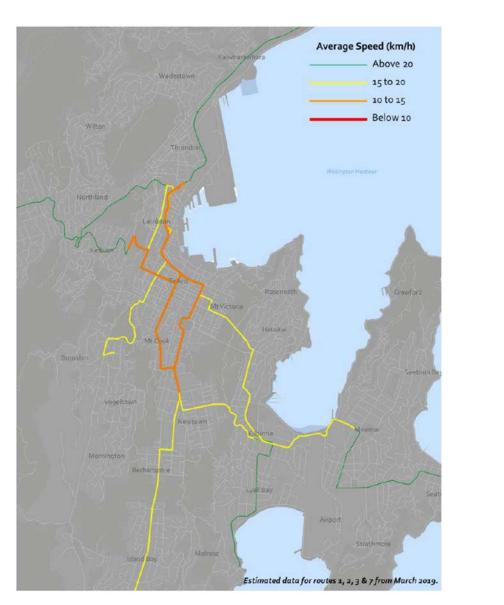


Figure 9: Average bus speeds – morning peak (7-9am)

Figure 10: PT travel variability - morning peak (7-9am)

As shown in Table 3¹⁹, key reason for delayed and slow bus journeys relate to traffic congestion, delays through intersections and when re-entering general traffic lanes from stops and the frequency of bus stops. While these issues are not unique to Wellington, they are symptomatic of Wellington's constrained corridors and the competition for road space with few bus lanes available.

Table 3: Why buses are typically delayed

Category	Delay cause	Description
Bus stops	Bus stop spacing	Some bus stops are so close there are overlapping walking catchment. Buses stop more frequently with minimal benefits to passengers
	Re-entry	Buses are delayed when waiting to re-enter from a bus stop
	Long dwell times	At some bus stops, buses stop for longer than is ideal to allow passengers to get on and off
Traffic lights	Traffic and pedestrian lights	Buses are delayed at traffic lights and signalised pedestrian crossing
	Queues	Buses are delay in queues at traffic lights
On-road	General traffic	Buses are delayed by mid-block traffic congestion and on-street parking
	Road layout	Narrow lanes and/or on-street parking limit the speed at which buses can travel safety

Work undertaken by WCC and GWRC for the BPAP and the 2019 Bus Network Review²⁰ found that while there are 70,000 bus journeys taken each day, improving bus reliability and travel times would help enhance public transport journeys and encourage more people to use public transport, particularly at peak times.

Currently, average lateness of buses in the morning peak is around 3 minutes with dayto-day variation averaging 7 minutes (see Table 4²⁰). In addition, the variability in journeys times —particularly for journeys to and from Karori and Seatoun— can be significant, affecting travel time predictability.

Table 4: Bus data for key journeys

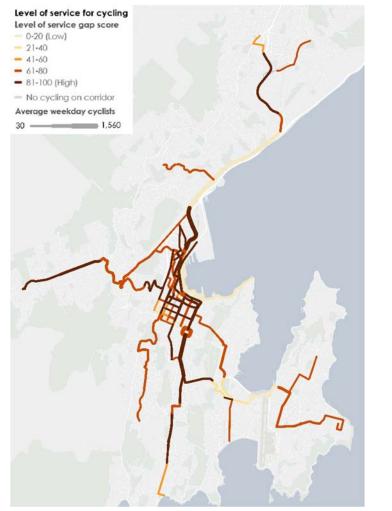
INBOUND	Newtown to city	Karori to city	Seatoun to city	Mt Cook to city	Kelburn to city	Kilbirnie to Newtown	Brooklyn to city	Ngauranga to j'ville
Daily passengers	5500	2700	2600	3500	2500	2000	1500	3700
Average speed (km/h)	13.1	22.6	19.3	12.5	19.7	14.0	15.3	24.5
Average travel time (mins)	11	17	27	10	7	9	10	9
Minimum travel time (mins)	7	12	22	6	5	5	7	7
Maximum travel time (mins)	15	30	35	15	9	11	14	13
Length (km)	2	6	9	2	2	2	3	4
Number of stops	8	21	30	8	5	7	10	4
Slowest weekday hour	4-5pm	8-9am	8-9am	4-5pm	8-9am	8-9am	8-9am	8-9am

OUTBOUND	Newtown to city	Karori to city	Seatoun to city	Mt Cook to city	Kelburn to city	Kilbirnie to Newtown	Brooklyn to city	Ngauranga to J'ville
Daily passengers	5300	3000	2800	3100	4200	2100	2000	4000
Average speed (km/h)	12.2	21.5	19.6	13.0	20.3	16.8	14.7	34.8
Average travel time (mins)	12	17	27	10	7	7	11	6
Minimum travel time (mins)	9	14	23	6	5	5	7	5
Maximum travel time (mins)	15	24	33	13	8	9	15	9
Length (km)	2	6	9	2	2	2	3	4
Number of stops	7	20	30	7	5	7	10	5
Slowest weekday hour	5-6pm	5-6pm	3-4pm / 5-6pm	5-6pm	5-6pm	5-6pm	5-6pm	5-6pm

Statistics are based on May 2019 data

Improving bus reliability would be one key factor in making bus travel an attractive alternative to the car, encouraging more people to travel via bus. This in turn will reduce congestion and carbon emissions and contribute to the vision of LGWM.

²⁰ https://www.metlink.org.nz/our-metlink-journey/our-metlink-bus-journey/bus-network-review/


¹⁹ Wellington Bus Priority Programme IBC, 2019 prepared by Wellington City Council, and Greater Wellington Regional Council

3.3.2. Constrained corridors cause poor levels of service for active users

With many of Wellington's constrained corridors operating at or near capacity, cyclists (and some pedestrians) compete for space with other road users. As such, existing cycling and walking LOS are considered relatively poor across the city as shown in Figure 11 and Figure 12.

City Streets has utilised the Danish LOS Method²¹ to assess current levels of services for cyclists on routes within the scope of City Streets (ref Appendix D: Prioritisation methodology). Many of the routes have high LOS gaps of 80 (see Figure 11²²) or more demonstrating overall poor LOS for cyclists, and a general lack of connectivity. High volume pedestrian inner city routes have also been assessed to gauge current levels of service for walking. Factors such as delay, severance, permeability, and amenity have been considered in assessing the levels of service for walking. Figure 12 shows many pedestrian routes have average to low levels of service (i.e., gap scores of 50 or higher). The poor walking LOS often relate to where footpath quality is poor or inaccessible, with long signalised intersection delays, and in some cases footpath congestion.

Poor provision for people on bikes and pedestrians creates an unsafe and unappealing environment, in both perception and reality, particularly for those less confident. The role of perceptions of active travel and public transport are considered further under Problem 3 (Section 3.5).

nent 1 to Report 21

Figure 11: Current cycle levels of service

²² Levels of service are not shown in the Mt Victoria tunnel which is part of the Strategic Highways package. The connection between Hataitai and the inner city is an off-road track, via Mt Victoria.

²¹ The Danish CLOS tool has been utilised across the LGWM programme to provide consistency of approach and is also commonly used by WCC. Factors considered include vehicle volumes and speeds, on street parking, existing cycle facility type and width and adjacent land use.

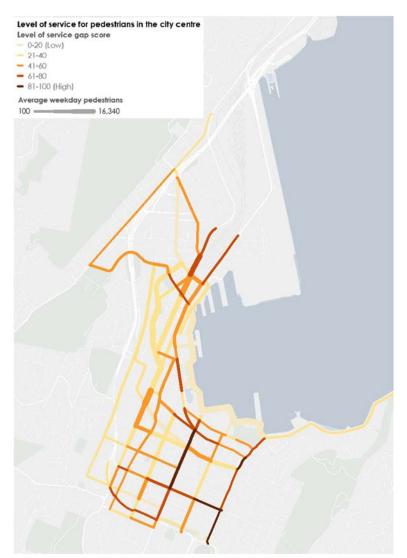


Figure 12: Current central city walking levels of service gap

3.3.3. Poor safety outcomes

Figure 13 shows safety related LOS gaps, based on personal risk (the risk to the individual of fatal or serious casualties per million vehicle kilometres travelled), collective risk (the number of fatal and serious casualties over a distance) and actual crash rates. Poor safety outcomes are most evident on Willis Street, between Mercer and Dixon streets, where pedestrian and road traffic volumes are high (as shown by the line width), and different transport users are competing for space in constrained corridors.

Walking and cycling is a key component of Wellington's Streets and ensuring that people are safe and feel safe when walking or cycling is a key consideration. Crash data recorded in Wellington over the last five years shows that safety issues exist for users of active modes, with a disproportionate number of crashes involving pedestrians and cyclists.

Between 2015 and 2019, there were 7,281 recorded crashes in Wellington City, giving an average of 1500 crashes per year. Of these crashes, 332 were serious and fatal crashes over the five-year period. About 12 percent of all crashes over this period involves a cyclist or pedestrian in Wellington City²³ as shown in Figure 14. More concerning is the proportion of active mode users involved in serious and fatal crashes. Approximately 50 percent of serious and fatal crashes in Wellington City involved users of active modes which is disproportionate to the mode share of active modes.

²³ This figure may be higher, given the propensity for under-reporting cyclist and pedestrian accident rates (refer https://www.nzta.govt.nz/resources/research/reports/289/index.html)

Figure 13: Levels of service gaps for safety

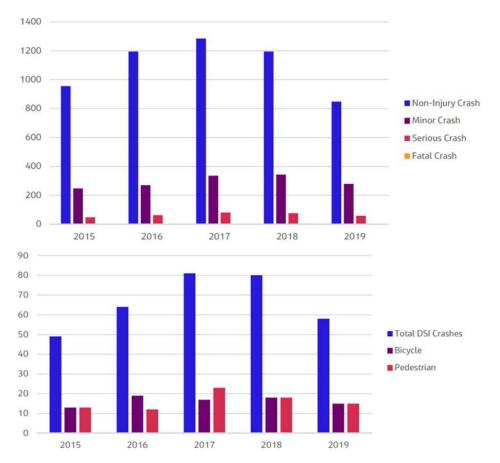


Figure 14: Total crashes by severity (top) and DSI crashes involving active mode users, 2015 – 2019

In the five years between 2015 and 2019, 376 crashes involving buses were reported, with 20 crashes causing death or serious injury as shown in Figure 15. Most of the death and serious crashes are concentrated around the Golden Mile public transport spine, which has the greatest potential for conflict between pedestrians and buses. Confidence in the safety of public transport system can diminish because of the quite visible and

publicised bus vs pedestrian crashes, which can affect people's willingness to use active modes (particularly cycling) in these corridors.

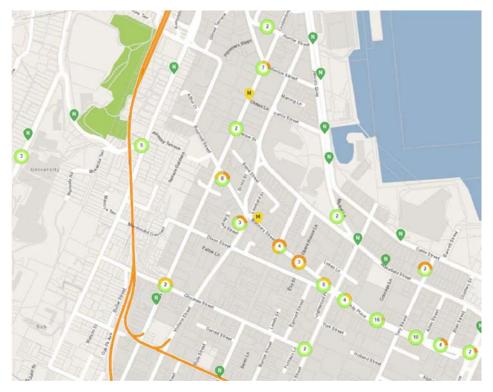


Figure 15: Wellington City crashes involving buses - Courtenay Place, 2015 - 2019

There are significant opportunities to be gained in addressing the identified LOS and safety gaps for public transport and active users, together with safety perceptions. Doing so will help improve the attractiveness of these modes as part of a safe and resilient transport system.

3.4. Problem 2: Future growth will further increase congestion affecting Wellington City's attractiveness

Wellington's future transport system and places will become less accessible and attractive with growing demand for travel through, from, and in the central city threatening Wellington's position as a great harbour city and the economic and cultural heart of the region.

Land use, urban form and economic activity are the primary drivers of demand for transport services in the Greater Wellington region and in the central city area. To be economically and socially successful small cities, such as Wellington, need to stand out in terms of what it can offer, particularly in terms of quality of life and quality of jobs in order to attract skilled populations to support growth.

Wellington has a reputation as a liveable city due to its quality of life, its harbour and topography, a highly skilled population, high incomes, healthy communities, and supporting creative and quality events. Ensuring Wellington continues to grow both in terms of population and economic activity and remains an attractive destination in both national and international contexts, is critical to the success of the City and the wider Wellington region.

Wellington City of the future will need to be:

- resilient and capable of supporting intensified land uses.
- attractive and compact and be more sustainable, accessible, and safe.
- attract high value jobs and opportunities.
- well-designed with walkable neighbourhoods connected by a smart transport system.
- growing and dynamic with world-class, inclusive place-making

The LGWM programme will play a critical role in helping achieve these aspects necessary for Wellington City and the Wellington Region to be sustainable.

3.4.1. Future growth - Population

The Wellington regional population was estimated at around 525,000 people in 2018. The estimate was made up of 212,000 people residing in Wellington City, and the remaining 313,000 people dispersed in the surrounding areas of Lower Hutt, Upper Hutt, Porirua, Kapiti and Wairarapa.

The LGWM are, with regional partners, in the process of revising regional population projections to 2036. Table 5 shows the latest indicative future projections prepared in November 2019 for the IBC phases of the wider programme. These updated estimates were prepared by Population.ID in collaboration with the regional territorial authorities.

Based on these projections, growth is expected to occur in the Wellington CBD, the inner-city suburbs such as Te Aro, Thorndon, Mt Victoria, and in the Northern suburbs. As growth occurs in these areas, the transport system will need to adapt to cater for the additional demand for active mode use within the city, and public transport to, within, and from the city.

The population projections are subject to further refinement, as city and region wide planning initiatives progress, and as scheduled updates are prepared and adopted. While the population projections are indicative, they remain reflective of the latest general direction being taken.

Table 5: Indicative population projections by area / Territorial Authority

	2013	2018	2036 Old	I (PBC)	2036 N (IBC	
	Base	Estimate	Abs	% Diff	Abs	% Diff
CBD	19,400	22,100	32,500	47%	29,600	34%
Inner Suburbs	24,400	26,900	31,000	15%	32,200	20%
Eastern	36,800	38,000	40,100	6%	40,300	6%
Southern	30,300	31,200	33,800	8%	34,000	9%
Western	25,300	25,700	26,600	4%	26,600	4%
Northern	64,100	67,600	77,600	15%	78,100	16%
Wellington City	200,300	211,500	241,600	14%	240,800	14%
Lower Hutt	101,100	107,600	107,300	0%	116,600	8%
Upper Hutt	41,400	45,300	47,400	5%	47,300	4%
Porirua	53,700	58,700	62,600	7%	79,400	35%
Kapiti	50,700	55,400	59,600	8%	62,600	13%
Wairarapa	42,400	46,700	44,200	-5%	50,900	9%
Region	489,600	525,200	562,700	7%	597,600	14%

3.4.2. Future growth - Employment

Wellington City is the main employment centre for the Wellington region, in part because of the concentration of the public sector. Over 40 percent of the current 252,000 jobs in the Wellington region are based in the central city. The high concentration of employment in the central city attracts commuters from the wider Wellington region.

Employment projections show regional employment growing by 13 percent between 2018 and 2036. Around 50 percent of the future growth in employment is forecast to be in the central city, potentially increasing the number of jobs there from 96,400 in 2018, to over 112,000 by 2036²⁴.

While the COVID 19 pandemic is expected to generate some shorter-term changes to the rate of the City's economic and population growth, the medium to long term outlook remains positive.

The Waka Kotahi *Arataki update report* notes that "Wellington is expected to be protected from the worst effects of the slowdown because of the scale of the public sector and major professional services. This may result in an increase in internal migration because of employment opportunities in the public sector"²⁵.

The Waka Kotahi analysis also suggests that changes to the nature of work for professional services could see a reduction in peak trips to Wellington city centre, because of more people working remotely. While it is difficult at this stage to gauge the longer-term impacts on commuter behaviour, national trends show the number of people travelling to work across New Zealand is continuing to recover steadily but remains about 10 percent lower than pre COVID alert levels in February 2020²⁶.

3.4.3. Implications of future growth

In recent years, the growth in travel demand into, from, and within the central city has been accommodated mainly by people choosing to:

• walk, cycle, and/or use public transport; and

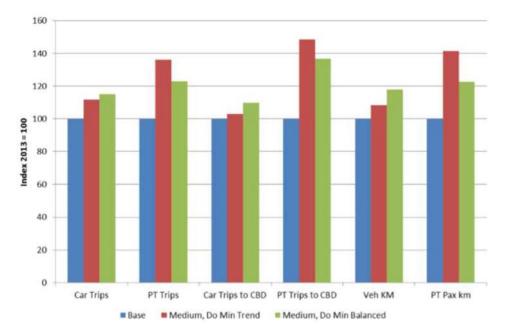
• travel earlier or later to avoid peak congestion on the road network.

Access via private vehicle within the central city has been held in check by the constraints in road corridor capacity, traffic congestion on the approaches to the central city, and the relatively high cost of commuter car parking within the central city itself.²⁷

Continued residential growth in the outer suburbs and wider region with commercial intensification of the inner City will lead to a strong demand for travel into the central city. This coupled with intensification of housing within the central city and inner suburbs will put further pressure on the transport system.

How land-use develops in the future will have a significant impact on the way people travel in the future. Greater intensification of the inner suburbs and central city provides the opportunity to substitute long distance private vehicle commute trips with shorter distance public transport, walking and cycling options.

Figure 16 shows that, regardless of any intervention, the demand for travel to and from the city centre by public transport is expected to grow by between 35- 50 percent. The higher increase is for a scenario where recent trends in the uptake of public transport and active travel modes continues. The corresponding increases in demand for driving into the city centre are forecast to be between 10-12 percent.²⁸


²⁴ LGWM, 2019. RPI and Indicative Package Modelling Report

²⁵ Waka Kotahi Arataki, Version 2 – Wellington https://www.nzta.govt.nz/assets/planning-andinvestment/arataki/docs/regional-summary-wellington-august-2020.pdf

²⁶ https://www.nzta.govt.nz/assets/resources/covid-19-impacts-on-transport/waka-kotahi-nztacovid-19-tracking-core-report-wave-21-20200929.pdf
²⁷ Available Transport Obstantin O cost of the cost

 $^{^{\}rm 27}$ Mass Rapid Transport Strategic Case - draft June 2020, Let's Get Wellington Moving $^{\rm 28}$ Ibid

Figure 16: Modelled change in PT and car metrics, 2013 base, 2036 do minimum trend, 2036 do minimum balanced^{29}

In future years, continuously increasing travel demand in the already constrained transport system will exacerbate many of the issues outlined in Problem One, and further reduce levels of accessibility because of congestion, delay, and reduced journey time predictability. Based on modelling, the journey travel time for private vehicles between key destinations and bus services between key destinations are expected to increase as shown in Table 6 and Table 7.

Absolute differences in travel times between these two modes of transport is also anticipated to increase, making travel by public transport a less attractive option.

Table 6: Predicted increase in vehicle travel time and travel time reliability for key routes 2016-2026³⁰

Route description	Morning Peak (7am-9am)				
	Average travel time (percent increase)	Estimated 95th percentile travel time (percent increase)			
Airport to Ngauranga Gorge (via SH1)	15 - 25 percent	25 - 35 percent			
Ngauranga Gorge to airport (via SH1)	15 - 25 percent	25 - 35 percent			
Newtown to Johnsonville (via Basin Reserve, waterfront, Hutt Road)	10 - 15 percent	15 - 25 percent			
Johnsonville to Newtown (via Hutt Road, waterfront, Hutt Road)	15 - 25 percent	25 - 35 percent			

Table 7: Indicative percentage increases in bus travel times 2016-2026³⁰

Bus route	Predicted increase in peak travel time		
Island Bay to Wellington Railway Station	10 - 25 percent		
Miramar to Wellington Railway Station	5 - 25 percent		
Karori to Lyall Bay	10 - 20 percent		
Kingston to Wellington Railway Station	10 - 20 percent		
Newlands to Courtenay Place	5 - 10 percent		

³⁰ LGWM, Nov 2017, Case for Change Report. Retrieved 27 May 2020, from https://lgwm.nz/assets/Uploads/Sml-LGWM-Case-for-Change.pdf

²⁹ Mass Rapid Transport Strategic Case - draft June 2020, Let's Get Wellington Moving. To be updated following revised do minimum modelling outputs.

The Golden Mile is expected to be a significant constraint on the ability to grow Wellington's regional bus network and support increasing demand for short trips within Wellington City. The Golden Mile is the main route for buses travelling through the central city — with up to 90 buses travelling along the Golden Mile per hour in the peak (8am-9am). Over the next 30 years the demand for travel to and from the city centre by public transport is expected to grow by between 35 percent and 50 percent.³¹

With the Golden Mile already near capacity for buses³², investigations recently completed as part of the LGWM Golden Mile Improvements package have confirmed that the Golden Mile will reach capacity for buses within the next ten years and that a second bus corridor through the city could provide a significant opportunity to grow bus capacity across the wider network and improve accessibility via bus. The second spine could form part of the City Streets package dependent on the outcome of MRT investigations.

3.4.4. Economic impact of congestion

Analysis undertaken for the PBC³³ estimated that on a typical weekday in 2016 road congestion is estimated to impose a cost of \$680,000 per weekday (in 2017 prices). Of this, 71 percent of the cost was associated with car traffic, 26 percent with buses, and 3 percent with trucks. 74 percent of the cost was attributed to the cost imposed on people due to longer travel time, 17 percent to people having to rearrange their day to reduce their exposure to road congestion, and 9 percent due to higher vehicle operation costs associated with longer travel time.

Although the bulk of this congestion cost is associated with commuting (39 percent of the daily cost is associated with morning peak time travel and 46 percent with afternoon peak time travel) there remains 16 percent of congestion costs associated with travel delays during the middle of the day.

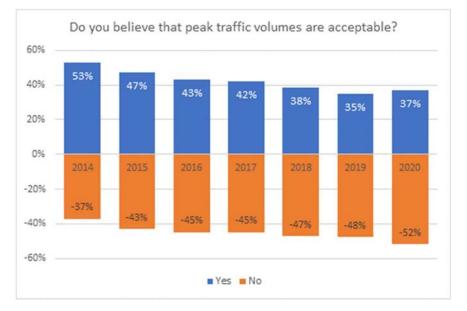
These estimates imply an annual congestion cost of \$133 million with a one standard deviation margin around this central estimate of between \$98m and \$168m. Modelling concluded that with no change in the Wellington transport network, the annual cost of

road congestion could increase to \$180m by 2026, with a one standard deviation band of \$133m to \$226m.

Let's

Attachment 1 to Report 21.34

3.4.5. Impact of growth and congestion on attractiveness and liveability of the City


As the inner city grows, and roads and footpaths become increasingly congested the ability to enhance the liveability of the city and create street environments that are attractive – through measures such as reducing traffic, slowing traffic speeds, improving pedestrian levels of service and enhancing street level amenity, will become increasingly challenging. Further population growth and congestion will also worsen carbon emissions if this growth feeds into more fossil fuelled cars on the road.

Wellington City residents are becoming increasingly dissatisfied with road congestion, with a clear majority now signalling that peak traffic volumes are unacceptable, as shown in Figure 17.

³³ <u>https://lgwm.nz/assets/Uploads/Estimates-of-costs-of-road-congestion-in-Wellington-Report-v1.pdf</u>

 ³¹ LGWM Golden Mile Improvement Project https://lgwm.nz/our-plan/our-projects/golden-mile/
 ³² i.e., adding more buses to accommodate growing demand will impact bus reliability as services become increasingly affected by bus-on-bus congestion and crowding at bus stops.

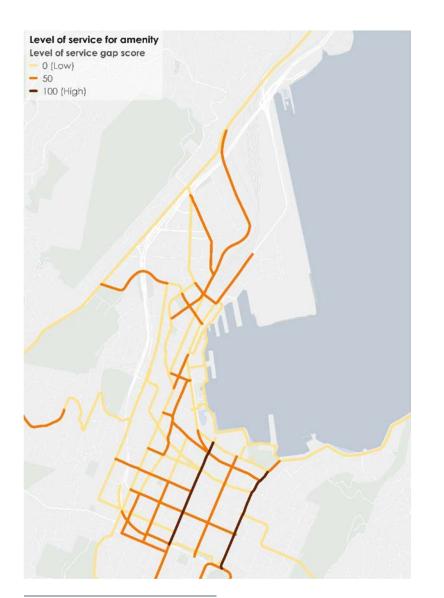
Figure 17: WCC residents' views on peak traffic volumes (2014-2020)³⁴

As part of LGWM, partners have developed a preliminary Place and Movement Framework³⁵ which aims to establish a 'common language' to describe both peoples' movement needs across the street network and the role of streets as places where people want to spend time. The Framework aims to:

- Collectively understand the relative importance of place and movement functions
 and modal priorities for Central City streets
- Establish street types based on a place and movement hierarchy and modal priorities.
- Guide the level of service and road space allocation for future design decisions.

As a preliminary framework not all of the City Streets geographic scope has been covered by the framework (which was focussed on a sub-set of Central City Streets) and so a qualitative approach, guided by stakeholder representatives with particular

³⁴ Wellington City Council – Residents Monitoring Survey 2020


expertise in the area of placemaking and liveability was applied. The outcome of the Place and Movement Framework and supplementary work carried out by City Streets was to map (Figure 18) where there is/will be an imbalance between place and movement as a consequence of the desire to provide a vibrant and attractive city for people to stay and enjoy, versus the increasing demands on moving people into and through the Central City.

Proactively responding to these place and movement challenges as part of City Streets will not only improve the accessibility of the city by bike and foot, improving travel choice and reducing reliance on vehicle travel; it will also help to enhance the attractiveness of the city as a place to live, work and play.

Improving the quality of the City's Street environment also helps achieve the growth aspirations for the Central City and inner suburbs by supporting a more compact, sustainable regional form.

³⁵ LGWM Wellington Place and Movement Framework, Central City (17 December 2019)

³⁶ Mass Rapid Transport Strategic Case - draft June 2020, Let's Get Wellington Moving

Figure 18: Amenity Gap Score

3.5. Problem 3: Public transport, walking and cycling is not attractive compared to private vehicles

The attractiveness of public transport, walking and cycling relative to the private car is not yet sufficient to stimulate a step change in mode shift away from private vehicles.

Wellington's compact urban form has contributed to relatively high rates of public transport and active mode use in the city and wider region (refer Figure 19³⁶), with an increasing number of people choosing to travel into the Wellington CBD during the morning peak by public transport, bike and by foot. Conversely, its steep topography and weather patterns can also act as a barrier to regular or increasing cycling and walking. Despite these barriers there remain potential increases in walking, cycling and public transport use that can be enabled by the City Streets package.

Figure 20 shows the results of an annual survey to capture the number of people (by mode) crossing a cordon encircling Wellington CBD. Over the five years from 2013 to 2018 the number of people crossing the cordon using non car modes increased from 47 percent to 52 percent, with cycling and pedestrian cordon crossings increasing by 15 percent and 8 percent respectively³⁷.

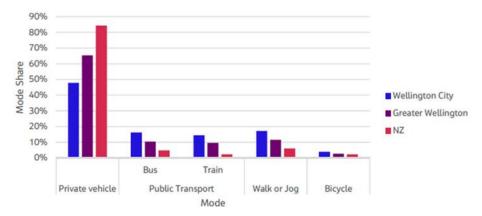
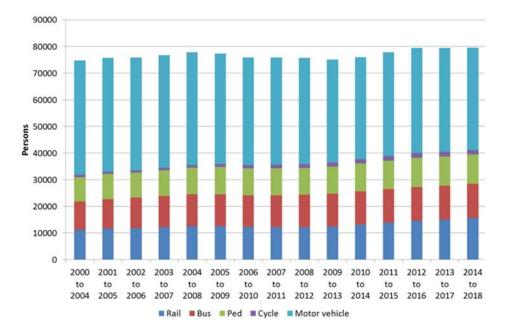



Figure 19: Journey to work mode share (2018)

³⁷ Greater Wellington Regional Council, RLTP 2021-24 Pressures, Trends, Issues and Opportunities report, June 2019.

Figure 20: Wellington CBD Cordon Crossing Volumes, 2001-2018, 5yr rolling average, 7am-9am inbound

Anecdotal evidence suggests that there has been significant peak spreading from the north particularly by car and some public transport over the last 5 years at peak times with limited growth in car trips 7am to 9am with marked growth pre 7am.

Whilst recent growth in the use of shared and active transport modes has been trending upwards, significantly more people will need to use public transport and active modes when travelling to, from, and within the city centre if the objectives of the LGWM programme are to be realised.

As outlined under Problem 1 (refer §3.3), the current levels of service for shared and active modes are relatively low across the City Streets network. The low levels of service have a considerable impact on the attractiveness of these modes and serve as a

deterrent for potential users. To drive significant mode shift, the programme must aim to achieve high levels of service for buses, cycling, and walking across Central Wellington and on key public transport spines leading into and out of the city, addressing both the actual and perceived levels of service for these modes. Without substantial improvements to the quality and quantity of shared and active mode facilities to improve user experience, the objectives of LGWM programme and wider regional mode shift aspirations may not be achieved.

Let's

ttachment 1 to Report 21.34

3.5.1. Public transport

The bus network is currently the only public transport option for much of Wellington City (apart from the northern suburbs), and it plays a critical role in mode shift given the capacity to move large numbers of people through, to and from the central city. As noted in Waka Kotahi's Regional Mode Share Plan for Wellington, buses will be increasingly important to support public transport mode share in key growth areas, particularly in those areas that are not well served by public transport or where bus mode share is low.

Metlink's customer satisfaction survey (Gravitas, November 2019) suggests there are several areas where improvements to bus services could encourage greater use. Improvements relevant to City Streets include reduced travel times, improved service reliability and improved bus stop amenity.

Public transport service reliability issues were also evident in the 2018 Quality of Life Survey, with only 57 percent of respondents agreeing that public transport in their local area was reliable (noting this survey was conducted before the bus network changes in mid-2018).

3.5.2. Active modes

Cycling and walking can make a substantial contribution to mode shift, particularly for short and medium length trips, and perception surveys suggest improvements could be made to encourage more people to bike or walk.

Only 30 percent of Wellington City respondents in the 2019 Greater Wellington Regional Council Transport Perception Survey³⁸ rated the levels of service for cyclists as good, with strong support for lowering traffic speeds and providing dedicated cycleways to help cyclists feel safer and encourage cycling (regardless of whether or not they cycled

³⁸ http://www.gw.govt.nz/assets/Transport/Regional-transport/Regional-Transport-Analysis/Transport-Perceptions-survey-report-August-2019-FINAL.pdf

themselves). Just over 40 percent of Wellington City respondents thought cycling was a good option for making trips to work or study, regardless of whether they cycled themselves, implying the potential for latent demand, given steady increases in cycling over recent years (off a low base).

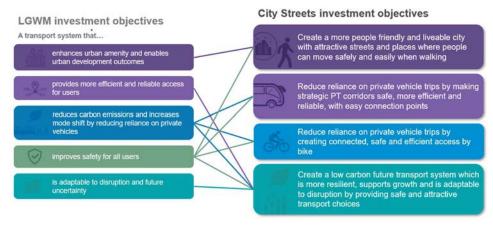
As presented in the 2015 Wellington Regional Land Transport Plan and Wellington City Council's Cycle Network Programme Business case, there is a strong correlation between the public perception of safety and uptake of cycling and poor perceptions that cycling is unsafe and inconvenient is limiting the potential to increase cycle mode share further.

Whilst Wellington is often considered one of New Zealand's walkable cities, only 54 percent of Wellington City respondents in the 2019 Greater Wellington Regional Council Transport Perception Survey thought the level of service was good or very good. Level of service was defined to mean getting around by foot on the region's roads and footpaths is easy, safe and pleasant; streets are well lit at night; there are sufficient places to safely cross busy roads and sufficient shelter for pedestrians where it's needed.

4. Investment objectives

This section sets out the outcomes sought from the recommended City Streets package. It shows the linkage between the wider LGWM PBC investment outcomes and how the City Streets package support the achievement of these outcomes. The outcomes of the LGWM programme cannot be achieved by City Streets alone and City Streets is particularly dependent upon the implementation of the Demand Management Programme being developed as part of LGWM as a complementary component to influencing mode-shift.

4.1. LGWM programme objectives


The outcomes and investment objectives sought for all the LGWM programme, as presented in the PBC are outlined below.

	What outcomes are we seeking?					
Liveability	Access	Carbon emissions and mode shift	Safety	Resilience		
What are our objectives? A transport system that						
Enhances urban amenity and enables urban development outcomes	Provides more efficient and reliable access for users	Reduces carbon emissions and increases mode shift by reducing reliance on private vehicles	Improves safety for all users	Is adaptable to disruption and future uncertainty		

Figure 21: LGWM moving investment objectives

4.2. City Streets investment objectives

City Streets investment objectives have been developed to be well aligned with the wider LGWM programme objectives but adapted to reflect the unique contribution that City Streets will make to the wider programme. This includes a strengthened focus on the connection between liveability/place and walking as shown in Figure 22.

Figure 22: Connections to the City Streets investment objective

Table 8 below outlines the investment objectives and the key performance indicators that will be used to help determine the success of the recommended City Streets package when implemented.

Relevant KPIs have been selected to align with those adopted for the Strategic Highways and Mass Rapid Transit business cases to maximise consistency across the programme.

Table 8: City Streets investment objectives and key performance indicators

Investment objectives	Key performance indicators	Measurement		
1. Create a more people friendly and livable city with	KPI 1.1: Urban Amenity	LGWM Amenity Index (monitor)		
attractive streets and places where people can move safely and easily when walking.	KPI 1.2: Pedestrian level of service	Pedestrian travel time crossing intersections / on key routes		
		Perceptions of levels of service for pedestrians (monitor) ³⁹		
2. Reduce reliance on private vehicle trips by making strategic PT corridors safe, more efficient, and reliable,	KPI 2.1 Travel time reliability	Travel time reliability for public transport (buses) across the Wellington region, and on key strategic bus routes.		
with easy connection points	KPI: 2.2 Comparative travel times between modes	Travel time (median) for key modes and routes		
	KPI: 2.3 PT network reliability	To be confirmed – will be drawn from model assessment based on real-time bus network data.		
		Percentage of scheduled bus services that actually ran as tracked by Metlinks' RTI and Snapper systems (monitor)		
		Percentage of scheduled Metlink bus services that depart from origin, leaving between one minute early and five minutes late (monitor)		
3. Reduce reliance on private vehicle trips by creating connected, safe, and efficient access by bike	KPI: 3.1 The quality of cycling infrastructure	Infrastructure Level of Service (Danish method) along and around the corridor (Percent Cycle network LoS A-C, Percent Cycle network LoS D-F)		
	KPI: 3.2 Forecast new cycle users	Transport modelling		
4. Create a low carbon future transport system which is more resilient, supports growth and is adaptable to	KPI: 4.1 Opportunities for urban development and value uplift	Quantitative assessment where possible – qualitative assessment to confirm whether value uplift is potentially relevant		
disruption by providing safe and attractive transport choices	KPI: 4.2 DSIs for all transport users (by mode)	Analysis of Crash Analysis System (CAS) data using crash estimation compendium methods		
	KPI: 4.3 Mode share in the central city	Number of people travelling across the central city screenline (north, south, east and west) by mode		
	KPI: 4.4 Mode share across the region	Person kilometres travelled by mode around the region		
	KP 4.5 Transport related CO _{2-e} emissions (city and region)	CO_{2-e} emissions (city and region) (based on transport model outputs and actual traffic data and/or CO_{2-e} emissions (city and region) per person kilometre travelled.		

³⁹ Based on Wellington City respondents in GWRC annual transport perception surveys

Economic case

5. Economic case - overview

This economic case identifies and recommends a preferred way forward for the City Streets package. A range of options for investing in the city both by location and mode are considered and assessed against City Street's investment objectives to inform an overall recommendation.

The remainder of this section:

- Provides an overview of the methodology adopted supported by more detailed appendices and references.
- Outlines the long list of streets considered for investment, the rationale for their inclusion and data used to support it.
- Outlines the shortlisted packages and their assessment.
- Revises and presents a final recommended package of investment demonstrating how it gives effect to City Streets Investment Objectives

6. Methodology overview

As noted in Section 1.2, the City Streets IBC sets out the case for investment in an optimal city wide, multi-modal package of interventions to maximise a shift away from single occupancy vehicles and provide an indicative implementation strategy for the next phases.

The high-level five stage methodology adopted for City Streets IBC is shown in Figure 23. In broad terms, the methodology is based on assessing current levels of service against aspirational levels of service for walking, cycling, public transport, placemaking and safety. Investment is prioritised towards the areas with the largest levels of service gap which have the potential to influence the largest number of people. Further explanation of the methodology and aspirational levels of service is outlined in the remainder of this chapter and Appendix D. Importantly, aspirational levels of service have only been used to identify priority corridors. Indicative solutions and their cost have not been identified which meet those aspirations (ref. §8).

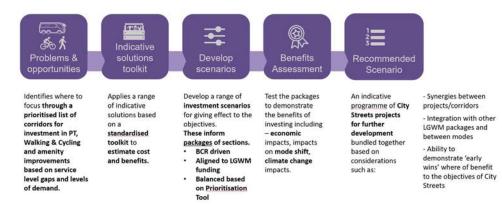


Figure 23: Overall City Streets Methodology

7. Stage one – developing the network prioritisation tool

The geographic scope of the City Streets IBC is defined in Section 2.2 and shown in Figure 5 on page 6. The scope contains all streets in the Central City coupled with the bus priority corridors as defined by GWRC.

To develop an in-depth understanding of the system the study area was divided into 163 network sections. A network section being made up of a street between intersections or a collection of streets with similar characteristics such as levels of demand or geometry. There are 120 sections covering the central city for which data was available and 43 sections covering the strategic bus network outside of the central city.

The levels of service data for the streets analysed (and had available data) in the Central City are shown in Figure 24. The analysis for the IBC did not include a primary data collection exercise for secondary streets with no levels of service data. These streets will be examined further if the neighbouring core corridors, examined in the IBC, are taken forward to the recommended package. A full list of sections in the Central City and bus priority corridors are included in Appendix B and Appendix C.

For each of the sections relevant existing data was collated and used to describe six key dimensions which City Streets has the potential to influence:

- Public transport
- Cycling.
- Walking Walking levels of service have only been defined for the Central City as per the scope of City Streets IBC and because there was limited data on walking for the bus priority corridors. Outside of the city centre bus boardings and alightings were used as a proxy for pedestrian demand.

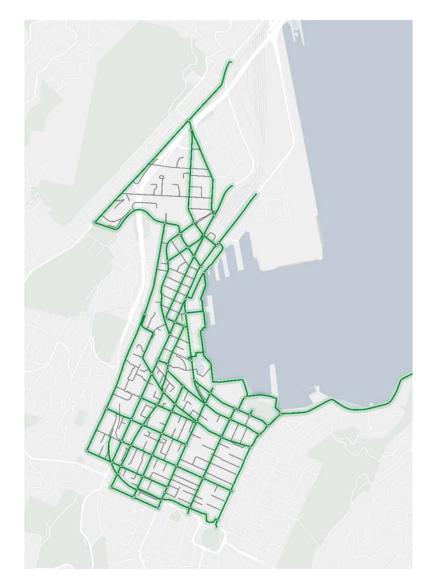


Figure 24: Central City Sections

- Amenity/place
- Safety
- Growth

The factors considered are shown in Table 9 below. For each factor data has been collated and brought together into a City Streets prioritisation tool which is made up of over 40,000 data points drawn from more than 15 different data sources.

Table 9: Summary of factors considered for each of the prioritisation criteria

Prioritisation	Factors c	onsidered		
criteria	On key suburban corridors	In the city centre		
Public transport level of service	Bus travel time delayBus travel time variabilityBus patronage			
Cycling level of service	 Cycling level of service Gradient Cyclist volumes 	 Cycling level of service Cycle permeability (one-way streets) Cyclist volumes 		
Walking level of service	 Walking level of service for pedestrians accessing bus stops Bus boarding and alighting volumes 	 Pedestrian delay Pedestrian severance Pedestrian permeability (lack of pedestrian connections between streets) Current and aspirational place values Pedestrian volumes 		
Amenity and place	 Aspirational place values for town centres 	 Current and aspirational place values 		
Safety	 Collective and Personal Risk ratings Social cost of injuries Number of vulnerable user crashes 			
Access to support growth	Planning for Growth estimated the corridor	population growth served by		

Once collated and brought together in the prioritisation tool, the data — through a series of weightings — is combined for each of the six key dimensions to form an overall 'dimension score/level of service gap score' which is normalised to be between 100 and 0. The worst performing sections and dimensions scoring 100 and the best scoring 0. From the scores, level of service maps have been developed to demonstrate the level of service gap (by colour) and, where appropriate, levels of demand through the thickness of lines. Examples of these level of service maps are shown in Figure 11, Figure 12, Figure 13 and Figure 18 of the Strategic Case. The full set of level of service maps are included in Appendix E.

All six prioritisation criteria were assigned a score between 0 to 100, with 0 representing the lowest priority (no to minimal problems / opportunities on the segment) and 100 representing the highest priority (the most problems / opportunities relative to other locations in the City Streets scope). This ensured that the scores for all six of the criteria used the same scale, where the location with the highest priority under that criterion had a score of 100.

The scores for the six prioritisation criteria were calculated using the following process:

- 1. Input data was collated and matched to each corridor segment.
- 2. Input data was analysed to calculate scores for the six prioritisation criteria. For some criteria, sub-criteria scores needed to be calculated first. The sub-criteria scores were then combined to calculate the final prioritisation score; this process varied for each of the six prioritisation criteria.
- 3. Where required, the prioritisation criteria scores were normalised to a scale of 0 to 100, so that the highest score was scaled to 100.

A summary of this process for calculating the prioritisation criteria scores is outlined in Figure 25 with further information contained in Appendix D.

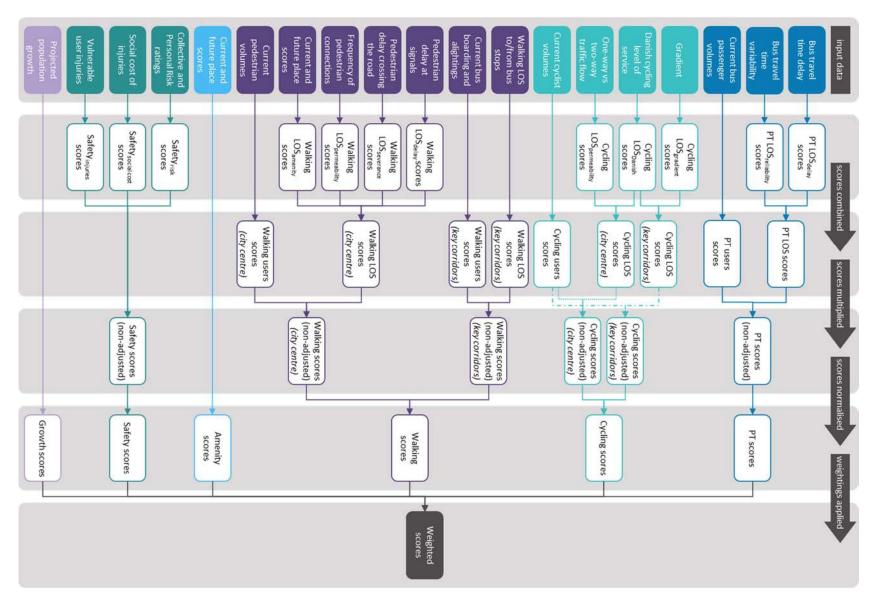


Figure 25: Process for calculating the prioritisation criteria scores

GET MOVING

Let's

8. Stage two – solutions toolkit

Accompanying the prioritisation tool, a solutions toolkit has been developed (ref. Appendix D). The purpose of the toolkit is to provide a template solution for deriving costs and benefits for the purposes of the IBC. Actual interventions for specific projects will need to be investigated more thoroughly at the detailed business case phase.

The solutions are grouped into five categories of interventions with broad sub-categories and options below them:

Bus priority interventions	Pedestrian interventions
Bus stop improvements	Footpath improvements
In-lane bus priority measures	Intersections
Corridor improvements	Midblock crossings
Signal improvements	Signal improvements
	Accessways
Cycle interventions	General safety interventions
Midblock cycling facilities	Traffic calming
Intersections	Intersections
Midblock crossings	
Signal improvements	
Accessways	
Amenity improvements	
Pedestrian facility upgrades	
Amenity upgrades for transport users	

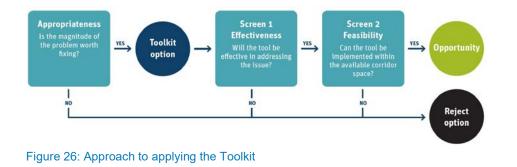
In addition, traffic mitigation measures have been considered where there is judged to be an unacceptably significant and adverse impact on vehicles, interventions which mitigate may be required. Mitigation examples include:

- Traffic lanes
- Parking management

The interventions are expected to be applied inside the road corridor (defined as the building-to-building width) or on cycle and / or pedestrian accessways. In some cases, delivering interventions may entail minor road widening or creating new accessways.

Although the City Streets project is designed as a multi-modal package of improvements, the intervention toolbox is defined in a mode-specific way. Multiple interventions have been overlaid on corridors to achieve multi-modal outcomes.

8.1. Application of the toolkit


The BPAP defined three levels of intervention to provide infrastructure on the bus priority corridors from 'Fix everything' to 'Fix the worst problems' down to 'Minimal interventions'. The BPAP analysis concluded that fixing the worst problems was the most economically beneficial package.

Given the high-level nature of the City Streets toolkit, the project team has adopted a similar approach in the application of the toolkit to identify the most appropriate intervention at the IBC level. The project team, for the purpose of the IBC, has taken a 'Fix the worst problems' approach with options applied from the toolkit where they:

- are effective at addressing the most appropriate problems that have been identified on the corridor.
- are technically feasible.

For each network section, the most appropriate opportunities have been selected using a three-stage screening process to move from level of service gap to toolkit selection, as outlined in Figure 26.

It should be noted that the toolkit approach does not guarantee that desired levels of service will be met, rather it identifies at this stage, the most appropriate toolkit solution to apply. At the next phase of project development, a broader consideration of options

will need to be undertaken to identify the best specific option to implement reflective of the unique characteristics of the street/journey being investigated and value for money of delivering levels of service. This options analysis should also include interventions not forming part of the IBC toolkit such as bus service enhancements, ticketing improvements, or general traffic lane reconfigurations (e.g., one-way streets, street closures etc). Depending on the circumstances there could be the opportunity to trial options (such as tactical urbanism, parking removal, side street closures etc) with suitable monitoring of impacts prior to adopting more permanent changes.

The outcome of completing stages one and two is a populated baseline prioritisation tool which has level of service gap data and indicative interventions with associated costs for each of the 163 network sections included in the City Streets geographical scope.

9. Stage three – develop investment scenarios

Stage three involves developing and testing an initial range of investment scenarios to inform the identification of a preferred package of projects to investigate in more detail as part of delivering against the investment objectives of City Streets. These projects should provide value for money, integrate well with the wider LGWM programme, and form a coherent programme of activity.

The prioritisation tool, developed in Stage 1, allows the weighting given to each of the six key dimensions⁴⁰ to be varied to enable the testing of different areas of focus for potential investment. For example, giving greater emphasis to public transport would elevate network sections with the highest PT LoS gap score to the top of the priority list, while emphasising safety would elevate the highest safety risk network sections to the top.

Irrespective of the weightings given to any

dimension CS takes a multi-modal approach to addressing the most appropriate issues across all modes.

Seven investment scenarios have been investigated:

- Balanced option treating all levels of service gaps broadly equally with three scenarios (A-C) considered to test the sensitivity of the tool to incremental changes in the balanced weightings.
- Public transport corridor focus- sections prioritised based on PT LoS gaps
- Walking / cycling corridor focus sections prioritised based on walking/cycling LoS gaps only.
- LGWM indicative funding a package built bottom up based on the indicative modal funding envelopes arising from the PBC. Two scenarios were tested:

- Public transport corridors first where the worst performing public transport sections were selected first up to an indicative \$250m level of investment and then from the remaining sections the combined worst performing walking and cycling sections to an indicative investment level of \$100m.
- Walking/cycling corridors first where the worst performing walking and cycling sections in the central city were selected up to \$100m with the remaining sections being prioritised on the basis of the worst public transport levels of service up to \$250m.

The weightings attributed to each of key factors for these scenarios is shown in Table 10 and Levels of Service maps for each scenario shown in Appendix F.

Table 10: Prioritisation scenario weightings

Scenario		Weighting					
	PT	Cycling	Walking	Amenity	Safety	Growth	
Balanced option A	20%	20%	10%	10%	20%	20%	
Balanced option B	17%	17%	17%	17%	16%	16%	
Balanced option C	25%	25%	15%	10%	15%	10%	
PT corridor focus*	100%	0%	0%	0%	0%	0%	
Walking and cycling corridor focus	0%	50%	50%	0%	0%	0%	
LGWM indicative							
funding scenarios - PT*							
LGWM indicative							
funding scenario – walking/cycling*							

* LGWM Indicative Funding Scenarios based on a combination of PT corridor and Walking & Cycling corridor focussed scenarios and respective weightings.

⁴⁰ Public transport, cycling, walking, amenity/place, safety and growth

City streets indicative business case

9.1. Long list to short list

9.1.1. Option refinement

When comparing the balanced options (refer Appendix F), it was found the weightings for Options A-C had a relatively minor impact on the overall prioritisation of sections. On this basis, 'Balanced option C' was taken forward as this was felt to provide a greater overall balance between central city level of service issues (reflected through walking, amenity and in part growth dimensions) with sub-urban corridor issues captured in the main by public transport and walking levels of service.

Similarly, when comparing the two LGWM indicative funding scenario options (PT first versus walking/cycling first) there was no fundamental difference in overall priorities observed. On that basis the LGWM indicative funding scenario with PT first was taken forward to more detailed analysis.

9.1.2. Indicative funding ranges

As noted in the strategic case section, funding estimates for implementation of City Streets activities were developed very broadly as part of the LGWM PBC and as advised by Waka Kotahi, are indicative only. This reflects the degree of certainty around the level of investigation and analysis of the City Streets related activities as part of the PBC, but also future uncertainty regarding funding availability over the anticipated duration of the City Streets delivery programme.

For the IBC, it is necessary to have a view on the potential investment window in order to define and test indicative programmes, demonstrate the potential costs and benefits of investment, as well as provide a common benchmark against which to compare prioritisation scenarios.

Based on the PBC indicative cost for City Streets of \$350m, we have defined our indicative window of investment for the City Streets package as between \$250m at the lower and \$400m at the upper bounds. This range is used for defining which sections are included in each scenario and for assessing each package.

Based on these indicative ranges the sections for each prioritisation scenario have been defined and are shown in Appendix G.

9.1.3. LGWM indicative funding scenarios

Four scenarios have been taken forward to more detailed assessment and modelling against two funding thresholds of \$250m and \$400m:

- Scenario 1 Balanced C
- Scenario 2 PT corridor focus
- Scenario 3 Walking/Cycling corridor focus
- Scenario 4 PBC aligned PT first.

10. Stage four – shortlist assessment

The four shortlisted investment scenarios (ref. Appendix G) have been taken forward and assessed in greater detail through a multi-criteria assessment reflective of City Streets investment objectives utilising either available data drawn from the prioritisation tool or new modelling undertaken specifically for City Streets.

10.1. Cost / benefits modelling approach

The City Streets project is expected to deliver benefits for users of multiple transport modes hence multiple models and evaluation methods have been used to capture benefits (or disbenefits) for different modes.

For economic evaluation, the do-minimum scenario for City Streets has been taken as the existing state with the inclusion of committed/in-progress projects (e.g., Cobham Drive cycleway). This is different to the do-min for MRT and SHI, as these projects include City Streets as part of their reference case. This means that City Streets economic analysis has excluded Golden Mile and Thorndon Quay/Hutt Road projects thus avoiding any double counting.

The following table summarises the approach used to model transport demands and value user benefits (or disbenefits) arising from the scenarios. A more detailed description of methods is provided in Appendix H.

Table 11: Demand and benefit modelling approach for indicative short-list scenario

Mode	Demand modelling approach	Benefit valuation approach
Public	Bus priority programme model	Travel time improvements
transport	Changes in demand due to travel	modelled using a model of bus
(bus)	time improvements modelled using	speeds on suburban corridors that
	an elasticity model based on	was developed for the Bus Priority
	guidance in MBCM Appendix A14	Programme, based on methods
		outlined in the Transport Capacity
		and Quality of Service Manual
		User benefits are assessed using
		MBCM parameters

Mode	Demand modelling approach	Benefit valuation approach
Cycling	Wellington cycle model	User benefits and health benefits
	Changes in demand due to facility	arising from improved facilities
	improvements modelled using a	and increased cycling activity are
	discrete choice (nested logit) model	assessed using demand model
	of cycle mode and route choice	outputs and MBCM parameters.
		Safety benefits are not assessed
		during Stage 4 but will use MBCM
		parameters and Crash Analysis
		System data
Walking	Active modes tool	User benefits arising from
	Current walking activity within the	improved facilities are assessed
	city centre is estimated by	using NZTA interim guidance on
	interpolating between counting	the impact of urban amenity in
	sites; future activity projected based	pedestrian environments ⁴¹
	on land use change and increased	
	PT volumes.	User benefits from faster/more
		direct routes and safety
	Model does not capture demand	enhancements are valued using
	uplift due to walking facility	MBCM parameters
	improvements	
General	Traffic counts and adjustment from	Network-wide decongestion
traffic	above models	benefits from mode shift to PT
	Current traffic count data used to	assessed using simplified
	estimate volumes.	procedure approach for indicative
	Mode shift from improvements to	analysis. Indicative assumptions
	public transport, cycling, etc is	about traffic disbenefits from
	subtracted off existing volumes	intersection and priority lane
		changes have also been
		incorporated.
		Option to use Aimsum model to
		validate results, or test other

⁴¹ <u>https://www.nzta.govt.nz/assets/planning-and-investment/docs/impact-on-urban-amenity-in-pedestrian-environments-march-2020.pdf</u>

Mode	Demand modelling approach	Benefit valuation approach
		network changes (e.g., significant
		reallocation of road capacity)
		User benefits/disbenefits will be
		valued using MBCM parameters
Road	Crash Analysis System	Crash reduction benefits are not
safety	CAS data is used to identify	assessed in Stage 4, although
	existing fatal and injury crashes in	simplified procedure drawing upon
	the study area. Crashes are	NZTA's Crash Estimation
	categorised according to the travel	Compendium was considered.
	mode of injured people, the severity	Experience shows that safety
	of injuries, and whether the crash	benefits are difficulty to robustly
	occurred at or near an intersection.	assess without detailed analysis
		of the cause of crashes.

10.1.1. Key benefit valuation assumptions

Valuation parameters and assumptions are drawn from NZTA's *Economic Evaluation Manual* (EEM) and/or its replacement, the *Monetised Benefit and Cost Manual* (MBCM). These assumptions include project period and discount rates (used to calculate the present value of whole-of-life costs and benefits) and parameters for valuing travel time benefits, active mode benefits, and crash cost reduction benefits.

The following table summarises some key assumptions and/or sources of assumptions.

Table 12: Standard valuation and benefit assumptions

Assumption	Value / source		
Evaluation period	uation period Start year: 2020		
	Project period: 40 years		
Discount rate	Central: 4%		
	Sensitivity test: 6%		

⁴² <u>https://www.nzta.govt.nz/assets/planning-and-investment/docs/health-and-active-modes-impacts-march-2020.pdf</u>

⁴³ <u>https://www.nzta.govt.nz/assets/resources/economic-evaluation-manual/economic-evaluation-manual/docs/crash-risk-factors-guidelines-compendium.pdf</u>

Assumption	Value / source
Value of travel time	Equity value of time by trip purpose from EEM Table A4.1(b)
savings	Trip purpose split for individual modes based on Household
	Travel Survey data
	Travel time savings for public transport users are sensitivity
	tested using a higher, 'crowded' value of PT travel time.
Walking and cycling	Per-kilometre benefit values and annual capped benefits per
health benefits	user drawn from the Health and Active Modes Impacts paper
	that updates current EEM values ⁴²
Crash cost reduction	Benefits for reduced fatal/injury/non-injury crashes could be
benefits	valued. Indicative crash reduction factors based on Crash
	Estimation Compendium parameters ⁴³
Footpath and	Benefit parameters for improved footpaths and pedestrian
pedestrian realm	facilities are drawn from the Impact on Urban Amenity in
benefits	Pedestrian Environments paper prepared for the EEM
	review ⁴⁴

In addition, because underlying demand models and demand estimation procedures are generally based on a 2019/2020 base year, it is necessary to make assumptions about baseline growth in demand and benefits. For consistency with other planning assumptions, transport demands (and hence demands for individual modes) are expected to grow in line with Forecast.ID population growth assumptions, plus gradual underlying mode shift based on past observed trends or future forecasts. Demand growth assumptions have been sensitivity tested. User benefits are expected to grow at a similar rate as demands, with sensitivity testing for higher rates of public transport benefit growth due to rising congestion.

⁴⁴ <u>https://www.nzta.govt.nz/assets/planning-and-investment/docs/impact-on-urban-amenity-in-pedestrian-environments-march-2020.pdf</u>

10.1.2. Additional benefits

Additional operational benefits are envisaged to accrue to Metlink in two ways:

- faster journeys reducing operating costs directly by reducing the time it takes to operate a given service. If journey times are substantially improved, it may also be possible to achieve the desired headways using fewer vehicles, resulting in further operating cost savings above and beyond what would be expected based on reduced journey times alone.
- 2. faster journeys can be expected to result in an increase in patronage. If increased peak loads result in a need for additional bus services, this will increase day-to-day operating costs and may also incur costs associated with purchasing additional vehicles. Increased patronage will also result in increased revenue for the transport operator, which will not impact the social cost benefit analysis but will reduce the net cost to government.
- 3. More reliable bus travel times can be expected to deliver wider network benefits beyond the specific corridor where an intervention is carried out. The Metlink bus network is interconnected and buses that operate on one corridor will often continue either in-service or out- of- service onto other corridor services. As a result, delays and unreliability in one part of the network can propagate through to impact the wider bus network. This means for example that improvements to reliability on one section of the PT network such as through Newtown will deliver wider network benefits to services across the city, especially to the Northern suburbs where many buses currently through-route between northern and southern destinations. However, City Streets could have two separate and offsetting impacts on operating costs:
 - If faster/more reliable journey times attract more passengers at peak times, it may require Metlink to run more buses to avoid severe crowding (thereby increasing PVR, service-km, and service-hrs, and increasing costs)
 - Faster/more reliable journey times may reduce service-hrs (by allowing drivers to complete existing bus runs faster) and/or reduce peak vehicle requirements (by allowing buses to finish their runs early and start a second run during the peak period), in turn reducing operating costs.

Experience suggests that it is difficult to get a realistic understanding of operating cost savings from faster/more reliable journey times without a highly granular assessment of existing bus schedules. This is because small reductions matter in some locations and for some routes, but not others. Specialist software like HASTUS is needed to calculate this which was out of scope for the IBC.

There are potential additional walking benefits generated by City Streets not accounted for in the analysis which is induced extra demand uplift in walking due to walking facility improvements.

At this stage of the business case process, it is difficult to quantify these additional benefits with any certainty without wider public transport operational reviews or pedestrian modelling and analysis. Consequently, such additional benefits have not been incorporated into the economic analysis undertaken for the IBC although they could be expected to accrue to public transport investment scenarios and walking investment scenarios respectively.

10.2. Multi-criteria assessment of the shortlisted scenarios

The result of a multi-criteria assessment for the four shortlisted scenarios is outlined in Table 13.

For each scenario, an indicative upper and lower bound package has been developed to inform the assessment of performance of each package. The upper and lower limits have been developed to indicative levels of investment of \$250m at the lower end and \$400m at the upper to align to the LGWM PBC for City Streets. Differences between scenarios have occurred due to the bundling of projects and the project costs, drawn from the toolkit, not precisely matching the upper and lower bound limits. The table highlights the best performing scenarios in both the high and low scenarios separately.

Each scenario has been assessed against the four City Streets investment objectives utilising metrics available either from the prioritisation tool and underlying data or modelling data utilising the same information used for the benefits assessment (reference §10.1).

Table 13: Shortlisted scenario multi-criteria assessment

			Scenario 1:Scenario 2: PTBalanced (C)corridors		Scenario 3: W&C corridors		Scenario 4: PBC Aligned – PT		
		Lower	Upper Bound	Lower Bound	Upper Bound	Lower Bound	Upper Bound	Lower Bound	Upper
On stand have dite		Bound 237							Bound
Costs and benefits	Scenario cost (\$m):		376	246	390	239	399	249	400
	Scenario BCR:		1.5	1.7	1.2	2.0	1.4	1.9	1.5
	\$m per km of investment:	8.7	8.5	7.7	8.2	9.9	8.9	7.0	8.1
% of City Streets base network	PT network:	37%	61%	55%	82%	31%	61%	52%	67%
improved	Central city network:	50%	66%	21%	42%	47%	67%	49%	74%
	Total network:	37%	60%	43%	64%	33%	61%	48%	67%
City Streets investment objectives	MCA sub-criteria								
Create a more people friendly and liveable city with attractive streets and places where	Urban Amenity (Length of streets with amenity improvements, km)		20	10	13	12	17	12	18
people can move safely and easily when walking	Walking benefits (Quality of facility and delay reduction benefits \$m)		283	132	165	215	265	213	292
	Pedestrian levels of service (km of streets with improved walking infrastructure)		17	4	8	12	17	12	19
Reduce reliance on private vehicle trips by making strategic PT corridors safe, more efficient, and reliable, with easy connection	Average ratio of travel times between PT and car on strategic routes (Do minimum = 2.3)		1.9	1.8	1.8	2.1	1.8	1.9	1.8
points	PT network reliability (\$m) ⁴⁵		25.4	31.9	34.4	17.6	27.9	24.9	32.3
	Additional daily bus trips		3,500	4,500	5,000	2,400	4,000	3,400	4,600
Reduce reliance on private vehicle trips by creating connected, safe, and efficient	Cycling level of service (km of streets with improved cycling infrastructure)	18	29	16	29	19	32	20	32
access by bike	Forecast new daily cycle users		3,000	2,500	2,600	2,800	2,900	2,600	3,000
Create a low carbon future transport system which is more resilient, supports	Injury reduction potential - Ten-year social cost of injuries in treated sections (\$m)	289	400	278	381	219	358	307	409
growth and is adaptable to disruption by providing safe and attractive transport choices	PT and cycling commute mode share uplift from Wellington city to central area (base mode share =33.5%)	+2.9%	+3.3%	+3.4%	+3.8%	+2.7%	+3.7%	+2.8%	+3.6%
	PT and cycling commute mode share uplift within Wellington City (base mode share =19.8%)	+2.2%	+2.4%	+2.6%	+2.8%	+2.0%	+2.6%	+2.2%	+2.8%
	Transport related CO ₂ emissions (tonnes saved p.a.)	960	1030	970	1020	890	1050	950	1130

⁴⁵ Present value of benefits estimated at 38% of direct PT user benefits through Bus Priority Action Plan PBC.

10.2.1. Sensitivity tests

Conducting a cost benefit analysis and deriving a BCR requires making assumptions and predictions about the future. Due to the inherent uncertainty involved in predicting the future it is important to test the sensitivity of the assumptions and predictions that underlie the analysis through sensitivity testing.

The parameters adopted for the baseline and two sensitivity tests undertaken are outlined in Appendix I with the results shown in Table 14.

Scenario	Investment Level	Lower Bound	Central	Upper Bound
Scenario 1: Balanced (C)	Lower Bound	1.0	2.2	3.1
Dalanced (C)	Upper Bound	0.7	1.5	2.2
Scenario 2: PT corridor focus	Lower Bound	0.7	1.7	2.9
	Upper Bound	0.5	1.2	2.0
Scenario 3: W&C corridor	Lower Bound	0.9	2.0	2.8
focus	Upper Bound	0.6	1.4	2.1
Scenario 4: PBC Aligned – PT first	Lower Bound	0.8	1.9	2.9
	Upper Bound	0.7	1.5	2.3

Table 14: BCR sensitivity tests

The sensitivity tests suggest that all four scenarios respond relatively similarly to changes to input parameters and underlying assumptions with no single scenario showing any particularly adverse response to changes in the baseline assumptions. At the lower funding levels, all scenarios perform at or close to a BCR of 1.0 under the lower bound assumptions. At the higher funding levels, it becomes questionable whether any scenario would achieve a BCR greater than one.

An area of current uncertainty is in relation to the impact of COVID-19 on the transport sector. Waka Kotahi, through Arataki v2 has presented their best and most current view of the challenges and opportunities facing the land transport system over the next decade. Within the Wellington context Waka Kotahi foresee:

- no significant changes in the nature, scale, and location of transport demand over the medium to long-term given the relative resilience of the Wellington economy.
- the 10-year outlook remaining largely unchanged.
- work to ensure the effective integration of land-use and transport remaining a
 priority, to support mode-shift and reductions in greenhouse gas emissions. This
 includes sequencing of development, ensuring growth areas are serviced with
 active mode and PT infrastructure and services, and linking housing to employment
 and essential services.
- there will be an ongoing need for transport services to support COVID recovery by improving access to employment and essential services for vulnerable communities.

10.2.2. Incremental analysis

An incremental analysis of the upper band scenarios has been undertaken relative to each scenario's lower bound as shown in Table 15.

In accordance with Waka Kotahi Monetised Benefits and Cost Manual (2020) the target BCR for incremental analysis is 1.0. None of the scenarios achieve this which suggests that there is no economic justification for investing in the Upper Bound relative to the Lower Bound indicative packages.

Table 15: Incremental Analysis

Scenario	Additional costs of upper bound (\$m)	Benefits accrued (\$m)	Incremental BCR
Scenario 1: Balanced (C)	156.6	56.6	0.4
Scenario 2: PT focus	162.7	38.9	0.2
Scenario 3: W&C focus	181.2	98.8	0.5
Scenario 4: PBC Aligned – PT first	170.7	135.8	0.8

10.3. Conclusion from Stage 4

On reviewing the MCA, economic analysis, and make up of each scenario, Scenario 2: PT corridor focus has been chosen to be taken forward for further refinement and detailed assessment (ref. Figure 27).

The MCA shows that all scenarios contribute to the outcomes of City Streets although, each gives emphasis to differing modes to various degrees. The PT corridor focussed package performs well across several criteria at both lower and upper bound funding levels. This package is estimated to make the most significant overall contribution to total mode shift with the largest total predicted uptake of new bus users of around 4,500 - 5,000 per day. However, with the focus on enhancing the key public transport corridors into and through the central city for public transport and cycling, the scenario performs the weakest in terms of overall benefits to walking (in terms of total kilometres treated) with the Balanced scenario generally performing best against City Streets liveability goals. All scenarios perform similarly in relation to their potential to improve safety and is not a distinguishing factor.

The balanced scenario and PBC aligned scenario perform similarly with the balanced scenario performing better at lower funding levels than the PBC aligned scenario. Economically, the balanced scenario performs best overall.

At the level of analysis undertaken it is difficult to differentiate between the packages on the relative reduction of transport CO_2 emissions, although it is clear the more investment in public transport, walking and cycling the greater and more significant the reduction in CO_2 emissions is.

Scenario 2 makes the largest contribution to mode-shift which is central to the goals of LGWM programme and targets investment to the key movement corridors in the city which connects existing suburbs and future growth nodes of Wellington with the central city. The analysis demonstrates there is significant scope to enhance these corridors to drive greater mode shift to cycling and public transport.

As noted, a drawback of Scenario 2 as that the focus for investment in the Central City for walking and amenity is limited to the critical movement corridors only, many of which overlap with wider proposed activities in the LGWM programme, in particularly MRT. This is reflected in the MCA through the marked reduction in walking benefits for Scenario 2 relative to the other scenarios. To address these deficiencies, Scenario 2 has been further developed and enhanced as outlined in the following section.

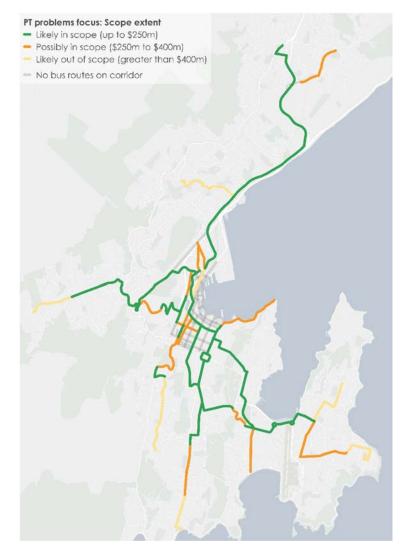


Figure 27: Recommended scenario for refinement and analysis

⁴⁶ There is no implication of timing in the order of project components.

11. Stage five – recommended package

11.1. Refining the preferred scenario

Further analysis was undertaken to refine Scenario 2: PT Corridor focus to form a final recommended City Streets package Refinement included:

- Enhancing the overall walking and cycling outcomes achieved by the package by including:
 - o east-west walking and cycling connections within the Central City.
 - o Enhancing walking improvements to key people-moving corridors
- improving the overall value for money of the package by removing lower priority enhancements on the outer fringes of the bus network
- Including any relevant and high-priority integration considerations arising from delivery of the other LGWM components
- Amalgamating corridor sections to form coherent 'projects'.

The resulting 'baseline' package for further analysis is made up of 18 projects, some of which have been further divided into sub-projects to reflect the differing nature and scale of issues in some project areas. For example, the route from Miramar to Kilbirnie was identified as one project. However, the section from Kilbirnie to the Miramar cutting is relatively low priority, while the section through the Miramar town centre is high priority. Therefore, the project was divided into two sub-projects. The projects and associated components that make up the baseline package are shown in Table 16⁴⁶, with further details in Appendix I.

City streets indicative business case

Project	Sub-Project		
Quays Route	Quays Route (including second PT spine)*		
City to Newtown	Basin to Newtown*		
5	Kent/Cambridge and Basin*		
City to Mount Cook	Taranaki*		
	Taranaki St to John St		
Hutt Road to Johnsonville and	Ngauranga Gorge		
Newlands	Johnsonville		
	Newlands		
North-South Walking/Cycling	Featherston Walking/Cycling		
Connection	Connection*		
	Willis/Victoria Walking/Cycling		
	Connection		
City to Kilbirnie (via Hataitai)	City to Kilbirnie (via Hataitai)*		
City to Karori	City to Karori Tunnel		
-	Karori Tunnel to Karori		
The Terrace	The Terrace		
Kilbirnie to Miramar	Kilbirnie to Miramar cutting*		
	Miramar Town Centre*		
Newtown to Kilbirnie	Newtown to Kilbirnie		
Newtown to Berhampore	Newtown to Berhampore*		
City to Kelburn	City to Kelburn		
East-West Walking/Cycling Connection	Ghuznee Walking/Cycling Connection		
	Dixon Walking/Cycling Connection		
	Vivian Walking/Cycling Connection		
Tory Precinct	Tory Precinct		
Whitmore	Whitmore		
City to Brooklyn	Brooklyn Hill		
	Brooklyn Town Centre		
Cuba Precinct	Cuba Precinct		
Molesworth/Murphy/Mulgrave	Molesworth		
	Mulgrave/Murphy		

* - scope subject to outcome of wider MRT investigations

11.2. Optimising the programme

It is important that the City Streets package demonstrates best value for money and balances the optimal contribution to the objectives of City Streets and the LGWM programme with the cost of the programme. To assess this, two variants were developed in addition to the full baseline programme presented above.

To develop the variants, the baseline programme sub-projects were prioritised using the six prioritisation criteria weighted as follows:

- Public transport: 50%
- Cycling: 15%
- Walking: 10%
- Amenity and place: 5%
- Safety: 15%
- Access to support growth: 5%

These weightings maintained a focus on public transport as a key trigger for multi-modal investment while giving weighting to the other prioritisation criteria.

This led to the highest priority components forming a significantly smaller programme, Variant 1, targeting only the highest priority corridors, with Programme Variant 2 striking a middle ground between the full baseline programme and only the very highest priority projects of Variant 1. The resulting prioritised list of sub-projects in each variant is shown in Table 17.

Table 17: Prioritised Project List and Programme Variant

Sub-Project	Key Drivers for Investment	Baseline	Variant 1	Variant 2	
Quays Route (including second PT spine)	PT, Cycling, Walking, Safety & Growth	\checkmark	\checkmark	\checkmark	
Basin to Newtown	PT, Cycling, Amenity & Safety	\checkmark	\checkmark	\checkmark	
Kent/Cambridge and Basin	PT, Cycling, Amenity, Safety & Growth	\checkmark	\checkmark	\checkmark	
Taranaki	PT, Cycling, Walking, Amenity, Safety & Growth	\checkmark	\checkmark	\checkmark	
Miramar Town Centre	PT, Cycling, Amenity & Safety	\checkmark	\checkmark	\checkmark	
Taranaki St to John St	PT, Amenity & Safety	\checkmark	\checkmark	\checkmark	
Featherston Walking/Cycling Connection	Cycling, Walking, Safety & Growth	\checkmark	\checkmark	\checkmark	
Willis/Victoria Walking/Cycling Connection	Cycling, Walking, Safety & Growth	\checkmark	\checkmark	\checkmark	
Johnsonville	PT, Amenity, Safety & Growth	\checkmark	\checkmark	\checkmark	
Ngauranga Gorge	PT, Cycling & Growth	\checkmark	\checkmark	\checkmark	
The Terrace	PT, Walking, Safety & Growth	\checkmark	x	\checkmark	
Karori Tunnel to Karori	PT & Cycling	\checkmark	×	\checkmark	
City to Karori Tunnel	PT, Cycling & Growth	\checkmark	×	\checkmark	
Ghuznee Walking/Cycling Connection	Cycling, Amenity, Safety & Growth	\checkmark	x	\checkmark	
Dixon Walking/Cycling Connection	Cycling, Walking, Safety & Growth	\checkmark	×	\checkmark	
Vivian Walking/Cycling Connection	Cycling, Walking, Safety & Growth	\checkmark	×	\checkmark	
Tory Precinct	Cycling, Walking, Amenity, Safety & Growth	\checkmark	x	\checkmark	
City to Kilbirnie (via Hataitai)	PT	\checkmark	×	\checkmark	
Newtown to Berhampore	PT & Cycling	\checkmark	×	\checkmark	
Newtown to Kilbirnie	PT & Safety	\checkmark	x	×	
Whitmore	Cycling & Amenity	\checkmark	×	×	
City to Kelburn	PT	\checkmark	×	×	
Brooklyn Town Centre	PT, Cycling & Amenity	\checkmark	×	×	
Brooklyn Hill	Safety	\checkmark	×	×	
Newlands	PT & Safety	\checkmark	×	×	
Kilbirnie to Miramar cutting	PT	\checkmark	×	×	
Cuba Precinct	Walking, Amenity & Growth	\checkmark	×	×	
Mulgrave/Murphy	Walking & Amenity	\checkmark	×	×	
Molesworth	Safety	\checkmark	x	×	

11.3. Variant assessment

The baseline City Streets package and variants have been assessed using the MCA framework adopted for Stage 4⁴⁷ and shown in Table 18 below.

Table 18: Prioritised Project List and Programme Variant MCA

		Baseline	Variant 1	Variant 2
Costs and benefits⁺	Undiscounted capital cost (\$m):	403	149	307
	NPV Whole of life costs (\$m)	456.0	168.9	347.4
	Scenario BCR:	2.0	3.5	2.4
	\$m per km of investment:	9.2	8.5	9.7
% of City Streets base network	PT network:	65%	24%	46%
mproved ⁺	Central city network:	57%	35%	50%
	Total network:	59%	24%	43%
City Streets investment objectives*	MCA sub-criteria			
Create a more people friendly and iveable city with attractive streets	Urban Amenity (Length of streets with amenity improvements, km)	15	9	12
and places where people can move afely and easily when walking	Walking benefits (Quality of facility and delay reduction benefits \$m)	490.1	381.3	452.2
, , ,	Pedestrian levels of service (km of streets with improved walking infrastructure)	14	8	12
Reduce reliance on private vehicle rips by making strategic PT corridors	Average ratio of travel times between PT and car on strategic routes (Do minimum = 2.3)	1.8	2.1	1.9
afe, more efficient, and reliable, with	PT network reliability (\$m)	34.0	13.1	29.2
easy connection points	Additional daily bus trips	4,882	1,836	4,095
Reduce reliance on private vehicle right relation right relation right relation rela	Cycling level of service (km of streets with improved cycling infrastructure)	32	12	24
efficient access by bike	Forecast new daily cycle users	3,000	2,000	3,000
Create a low carbon future transport system which is more resilient,	Injury reduction potential - Ten-year social cost of injuries in treated sections (\$m)	372	211	296
supports growth and is adaptable to disruption by providing safe and	PT and cycling commute mode share uplift from Wellington city to central area (base mode share =33.5%)	4.0%	1.9%	3.7%
attractive transport choices	PT and cycling commute mode share uplift within Wellington City (base mode share =19.8%)	2.9%	1.4%	2.6%
	Transport related CO ₂ emissions (tonnes saved p.a.)	1160	610	1080

+ Excludes the costs and benefits of the targeted improvements package which will be demonstrated through Targeted Improvement SSBCs as part of the next phase of City Streets

⁴⁷ Key differences in comparing the baseline metrics with Scenario 2 metrics from Stage 4 are attributable to ongoing model refinement and methodology updates to provide a robust economic analysis for the recommended package. This does not undermine the analysis from Stage 4 as the comparisons were made on a relative and not actual basis.

In addition to the MCA, an incremental analysis and analysis of benefits has been undertaken of the package options as shown below.

In accordance with Waka Kotahi Monetised Benefits and Cost Manual (2020) the target BCR for incremental analysis is 1.0. The incremental analysis of the baseline package is 0.5 which suggests that there is no economic justification for investing in the baseline package relative to sub-package 2.

Scenario	Total Costs (\$m)	Total Benefits (\$m)	BCR	Additional costs of upper bound (\$m)	Benefits accrued (\$m)	Incremental BCR
Variant 1	168.9	596.6	3.5	-	-	-
Variant 2	347.4	832.3	2.4	178.5	235.7	1.3
Baseline	456.0	891.3	2.0	108.6	59.0	0.5

+ Excludes the costs and benefits of the targeted improvements package which will be demonstrated through a

Targeted Improvement SSBCs as part of the next phase of City Streets

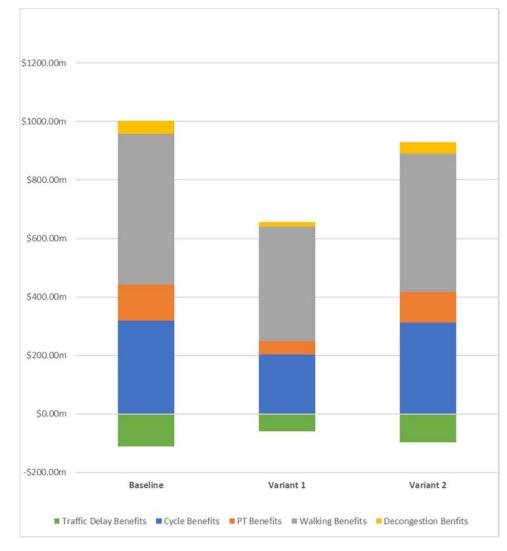


Figure 28: Distribution of Benefits

Table 19 – Incremental analysis

12. Recommended City Streets Package

The recommended City Streets Package is Variant 2 based on a number of considerations including:

- managing partners' cost risk associated with the package and minimising potential adverse stakeholder feedback if programme components become unaffordable.
- significant levels of walking (\$452m) and public transport reliability benefits (\$29m) are achieved relative to the baseline and Variant 1.
- no additional cyclists are forecast in the baseline scenario over and above Variant 2 along with relatively few additional kilometres of pedestrian (+2km) or amenity improvements (+3km).
- mode shift gains (3.7% in Variant 2 versus 4.0% for baseline) are marginal relative to each other and the additional cost of the baseline.
- Variant 2 targets \$296m of injury costs, which is almost 80% of the baseline of \$372m.
- potential CO₂ emission reduction from Variant 2 is predicted to be 1080 tonnes per annum (just 80 tonnes below that predicted for the baseline).
- recognising that in adopting Variant 2, City Streets would forego approximately \$50m of additional walking benefits and around \$5m of public transport user benefits.
- recognising that the baseline forecasts approximately 780 additional daily bus users over and above Variant 2 which would be foregone in adopting Variant 2.
- whilst still economically beneficial, the economic return on investment of the additional projects in the full baseline falls off when compared with Variant 2.

The recommended programme consists of 19 projects with a mid-point (P50) cost of \$284m (including business cases, pre-implementation and implementation costs) and high-cost estimate of \$471.9m.

For most interventions, WCC provided lower and upper end unit rates (ref. Appendix D). The midpoint cost has been calculated using midpoint rates multiplied by the relevant quantity estimates, with 42% applied for overheads and an extra 20% for project contingency.

The high cost (pseudo-P95) estimate has used the upper end rate provided by WCC. Where an upper cost has not been provided 44% has been added to the midpoint rate (the average increase from the mid-point to the upper rates for all interventions where we had lower and upper bounds). In addition, the same 42% for overheads and 20% contingency has then been applied.

At the mid-point cost, the package has a BCR of 2.4. The midpoint cost differs marginally in comparison to the MCA analysis due to the decision to exclude the Quays route from the City Streets package at this time given its significant co-dependence on MRT decisions. The programme, along with proposed next steps following endorsement of the IBC are outlined in Table 20 below divided into First Tranche and Second Tranche activities. The first tranche is shown in Figure 29.

Those projects identified for delivery as part of the first round of projects are further divided into:

- Projects for which there is a desire by the partners to commit to construction start in the first three years.
- Projects whose start would be conditional on final decisions around mode and route of MRT being confirmed.

For the purpose of the IBC activities have been defined as SSBC/SSBC-lite. Clarity on the level of detail required at the next stage, and hence the most appropriate business case pathway, will be determined during the scoping stage and engagement with project partners. Further details on next steps are contained in the Commercial, Financial and Management Cases.

Table 20 – Recommended City Streets Package

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
	Tranche 1 –	Immediate Sta	art with partner	desire to comm	it to construction start within 3 Years
Johnsonville Ngauranga Gorge	Johnsonville – Ngauranga PT Improvements SSBC/SSBC-lite	1.62	20.0	32.7	Bus route improvements between the Johnsonville Bus Hub and Hutt Road with associated cycling enhancements, walking to improve bus stop access and safety improvements.
Targeted Improvements	BPAP Targeted Improvements SSBC lite	0.15	2.25	-	 Take the Bus Priority Action Plan recommendations regarding Bus Stop improvements and develop this into a cohesive programme with identified costs and benefits with a focus on commencing in Karori. The SSBC lite will: confirm which stops to rationalise (ensuring best strategic outcome is achieved and integration with wider LGWM and WCC/GW programmes has been considered) identify options to be assessed at each stop – will include bus stop relocation/rationalisation, bus stop enhancements (including geometry or customer experience improvements), pedestrian access enhancements. Indicative costs and benefits of the programme Costed delivery programme. SSBC lite to provide the basis of funding for pre-imp (define the final solutions) and implementation of the costed programme. Whilst an indicative estimate of \$2.25m has been assumed for the IBC, this could change as an outcome of the SSBC lite if it is found that there is a better value proposition in investing more targeted improvements.
	Other Targeted Improvements SSBC lite	0.15	9.0	-	 Identifies a package of transport system targeted improvements which improve PT, Walking/Cycling, amenity and safety. The activities forming the package should be low cost, easily implementable with benefits known to outweigh costs. Activities to be considered include, amongst others: timing changes at traffic lights Bus phase / queue jumps at traffic lights. Hours of operation of clearways/bus lanes Minor pedestrian improvements Minor safety at high-risk intersections

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
					 Cycle parking The SSBC lite will: confirm the range of measures forming the targeted programme (ensuring best strategic outcomes are achieved and integration with wider LGWM and WCC/GW programmes has been considered) identify the scale of opportunity for improvement for each activity type and demonstrate the confirmed benefits associated with an activity type, setting out the necessary conditions for those benefits to be guaranteed to be realised. provide indicative pre-implementation and implementation costs for each activity type. provide a 3, 6 and 10 year recommended programme of activity types taking into consideration: partners and sectors capacity to deliver. activity type benefits and benefit realisation risk wider integration with City Streets, LGWM and WCC programmes SSBC lite will provide the basis of a funding application for pre-imp (define the final location and solution) and implementation of the costed targeted programme. Whilst an indicative estimate of \$9.0m has been assumed for the IBC, this could change as an outcome of the SSBC lite if it is found that there is a better value proposition in investing more targeted improvements.
City to Karori Tunnel	Bowen Street SSBC/SSBC-lite	0.69	9.0	16.1	PT, walking and cycling improvements along Bowen Street to align with WCC Kerb and Channel renewals scheduled for 2022.
			Tranche 1 -	- SSBC Immedia	ate Start
Taranaki St to John St	Taranaki St to John St SSBC/SSBC-lite	1.60	17.0	28.1	Identify PT and cycling enhancements to include:Bus stop improvementsWalking improvements to improve access to bus stops.

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
					Targeted PT, Walking and Cycling improvements at key intersections
Willis/Victoria Walking/Cycling Connection Ghuznee Walking/Cycling Connection Dixon Walking/Cycling Connection	South-West CBD Improvements SSBC/SSBC-lite	2.38	22.0	38.1	Provide a network of safety PT, walking, cycling and place improvements in the South-West CBD. Taking a network approach and using WCC's network hierarchy, identify the most appropriate user priorities and correlating corridor treatments to provide appropriate levels of service. The scope will need to take cognisance of the Golden Mile improvements, the potential impact of future MRT stations in the vicinity and Wellington City Council's commitment to the Poneke Promise (https://wellington.govt.nz/your-council/projects/the-poneke-promise) actions for Te Aro Park.
Kilbirnie to Miramar cutting*	Shelly Bay Road to Troy St PT Improvements SSBC/SSBC-lite	0.33	2.0	11.3	Low impact bus priority measures city bound between Shelly Bay Road and Troy Street * Included in the package to address a known PT reliability improvement in a high priority bus route servicing the airport.
Bus network & operational Improvements	A specialist contract covering analysis and assessment of bus network and operational improvements as inputs into Tranche 1 SSBCs	500	-	-	This is a complementary activity to the programme of SSBCs to be owned and scoped by Greater Wellington in support of any bus planning activities that GW may require to undertake to inform the SSBCs. Bus network and operational expertise is a specialist service best sat outside of our traditional multidisciplinary consultants. All CS SSBCs should, as part of the options analysis process, consider network and operational improvements as well as engineering enhancements. Engineering enhancements could also have unconsidered knock-on consequences for the PT network and operations. This support contract provides enhances GW's work in this area as part of necessary inputs into the Tranche 1 SSBCs.
Quays Route (including second PT spine)	Progress Feasibility testing of the Northern CBD Network Operating Plan	250	-	-	LGWM has been developing the MRT and Golden Mile as separate projects and City Streets identifies Featherston Street as a key walking and cycling connection also. WCC has developed a Network Operating Hierarchy for

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
Featherston Walking/Cycling Connection					 the Northern CBD however, there has not been any network testing of the hierarchy in practice. This commission aims to: Model the network operating hierarchy with current LGWM findings to understand how the network operates. Identifying any challenges and proposing modal solutions to address these. Identify at a high level any engineering constraints on achieving the network hierarchy/LGWM outcomes proposing alternatives and options to achieve a balanced transport system
		Tranche 1 –	Conditional on	form and route	of MRT being confirmed
Basin to Newtown Kent/Cambridge and Basin Taranaki	South Central SSBC/SSBC-lite	3.29	45.0	72.6	PT, walking and cycling improvements on the north end of Taranaki St, Kent/Cambridge and Adelaide and Riddiford Street. Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode.
Miramar Town Centre City to Kilbirnie (via Hataitai)	City to Miramar Town Centre SSBC/SSBC-lite	2.13	13.0	28.9	 PT, walking and cycling improvements between Kent/Cambridge and Miramar town centre with a focus on: City to Kilbirnie: Elizabeth St, Brougham St, Pirie St, Hataitai Bus Tunnel, Waitoa Rd, Moxham Ave, Kupe St/Hamilton Rd and Kilbirne Crescent Miramar Town Centre: Miramar Ave between Shelly Bay Road and Park Rd/Hobart St. Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode.
Newtown to Berhampore	Newtown to Berhampore SSBC/SSBC-lite	1.90	26.0	41.4	Includes the bus route from Newtown town centre to Island Bay including Rintoul St, Luxford St and Adelaide Road between Luxford St and Dee St. Improvements to include PT and cycling enhancements, walking improvements to improve bus stop access, safety & operational improvements at key intersections.

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
					Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode.
Quays Route (including second PT spine)	-	-	-	-	Scope to be incorporated into MRT following outcome of mode/route confirmation
Featherston Walking/Cycling Connection	Featherston Walking/Cycling Connection SSBC/SSBC- lite	2.09	14.0	21.7	 Scope to be informed by the WCC network operating hierarchy, confirmed MRT route and mode, Golden Mile investigations and City Streets Network Operating Hierarchy work undertaken as part of Tranche 1. Currently envisaged to include: cycling and walking enhancements along Featherston street between Mulgrave Street and Hunter Street walking improvements for pedestrians crossing Featherston St. safety improvements at key intersections Scope excludes side connections linking the Golden Mile to the waterfront which are expected to be taken forward by either the Golden Mile or MRT projects.
	Tranche 2 – Subjec	t to future fun	ding approvals	considering pro	ogress on Tranche 1 and programme review
The Terrace	Terrace SSBC/SSBC-lite	1.63	22.0	37.2	Includes consideration of bus, cycling and walking improvements including pedestrian crossing improvements and safety improvements at key intersections. Geographic scope covers the Terrace between Bowen Street and Ghuznee Street, and Ghuznee Street between The Terrace and Willis Street.

Project	Next Phase	Phase Estimate (\$m)	Mid-point Total Estimate (\$m)	High-point Total Estimate (\$m)	High level scope
Karori Tunnel to Karori	Karori Tunnel to Karori SSBC/SSBC-lite	2.72	38.0	61.4	 Includes the bus route from Karori Tunnel to the Karori town centre (Chaytor Street and Karori Road between Chaytor Street and Chamberlain Road). To include the long-term future options for the Tunnel although improvements beyond operational enhancements are presently outside the scope of activities to be delivered by City Streets. Identified improvements include: PT and cycling enhancements along the route. Walking improvements to improve bus stop access. Safety improvements at key intersections
Vivian Walking/Cycling Connection	Vivian/Tory Precinct SSBC/SSBC-lite	0.95	5.0	8.0	 Geographic scope includes Vivian Street between Taranaki Street and Kent / Cambridge Terrace, and Tory Street between Vivian Street and Courtenay Place and includes consideration of connections to Jessie Street, College Street, Lorne Street, and Tennyson Street. The SSBC purpose is to take a network approach and, by using WCC's network hierarchy, identify the most appropriate user priorities and correlating corridor treatments to provide appropriate levels of service and provide a safe and connected east-west cycling and walking network. The project builds from the earlier Ghuznee and Dixon walking / cycling connections to provide a connected network. Improvements include: Cycling and walking enhancements along the route Safety improvements at key intersections Amenity improvements
City to Karori Tunnel	Bowen Street to Karori Tunnel SSBC/SSBC-lite	1.71	39.0	62.4	PT, walking and cycling improvements from Tinakori Road at Bowan Street, along Glenmore Street to Karori Tunnel.

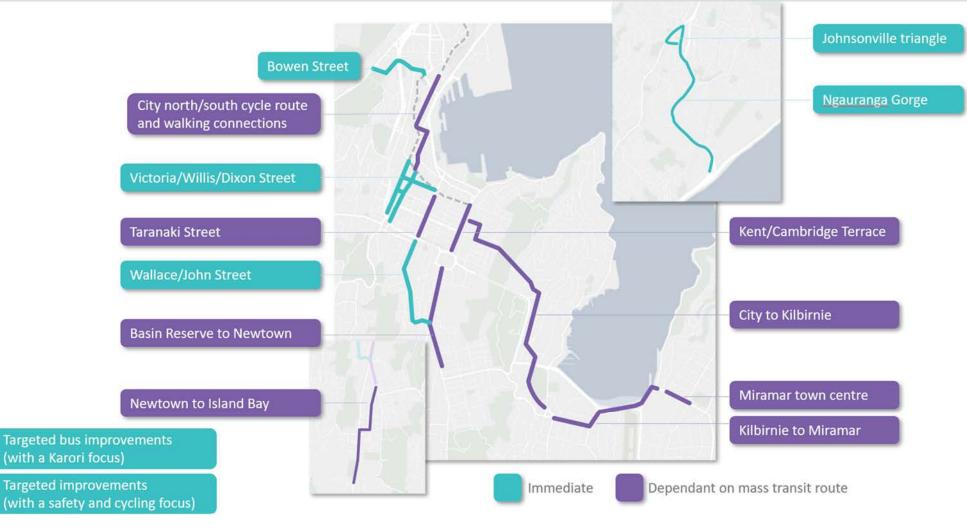


Figure 29: City Streets Tranche 1

12.2. Contribution to LGWM programme objectives

Table 21 below demonstrates how the City Streets contributes to the objectives of the wider LGWM using the measures used in the MCA process.

Table 21 – Indicative performance of recommended City Streets package against the LGWM investment objectives

LGWM Investment Objectives	City Streets MCA measure	
A transport system that		
enhances urban amenity and enables urban	% of central city network treated	50%
development outcomes	Length of streets with amenity improvements (km)	12
	Walking benefits (Quality of facility and delay reduction benefits (\$m)	452.2
provides more efficient and reliable access for	Pedestrian levels of service - km of streets with improved walking infrastructure	12
users	Cycling level of service	24
	(km of streets with improved cycling infrastructure)	
reduces carbon emissions and increases mode	Average ratio of travel times between PT and car on strategic routes	1.9
shift by reducing reliance on private vehicles	(Do minimum = 2.3)	
	PT network reliability (\$m)	29.2
	Additional daily bus trips	4,095
	Forecast new daily cycle users	3,000
	PT and cycling commute mode share uplift from Wellington city to central area (base mode	3.7%
	share =33.5%)	
	PT and cycling commute mode share uplift within Wellington City (base mode share =19.8%)	2.6%
	Transport related CO ₂ emissions (tonnes saved p.a.)	1,080
improves safety for all users	Injury reduction potential - Ten-year social cost of injuries in treated sections (\$m)	296
is adaptable to disruption and future uncertainty	% of City Streets base network improved (total network)	43%

Financial case

13. Financial Case – LGWM programme wide context

This section outlines:

- the financial context to the wider LGWM programme including highlighting the approach to clarifying the affordability of the programme as a whole and what elements are to be funded by the partnering organisations.
- cost assumptions including the capital expenditure and operating assumptions used.
- City Streets package costs and cashflow

13.1. Funding - Partner Affordability

LGWM is a step change in transport for Wellington and represents a major investment for all three funding partners. Due to the scale of the programme and other financial pressures facing the partners affordability will need to be reassessed at each phase as the programme progresses, including the City Streets component.

The IP anticipated detailed business cases would be developed and made a range of assumptions which would need to be explored in more detail through the subsequent phases including:

- A cost share of 60% central government 40% local government
- The central government share was anticipated to come from the NLTF.
- Financing was anticipated for the rapid transit project.
- NLTF funding projections included petrol excise duty and road user charge increases broadly in line with inflation over 30 years.

The following sections set out the agreed approach to the key LGWM programme wide financial arrangements, including City Streets activities, as the City Streets programme prepares to move to the next phase.

13.1.1. Financing

The LGWM programme is not the only funding pressure partners have and therefore partners will need to make wider decisions about their cashflow and financing.

For the projects within the 3-year programme, of which City Streets is part, a central financing mechanism operated by LGWM programme is not intended to be used. This may be revisited as the programme progresses through later phases.

Therefore, the cash funding required of each funding partner will be provided and it will be up to that partner to determine the financing arrangements for their own cashflow management, if any.

It is expected Councils will debt fund the next phase and Waka Kotahi use the NLTF on a 'paygo' basis.

13.1.2. Funding

The LGWM programme has completed a comprehensive inventory of funding tools in use across the world. This includes funding tools which fall under the broad categories of "value capture" and "user charging".

Any use of new funding tools would need to go through the appropriate approvals and in some cases legislative change. No decisions about any potential new funding tools have been taken and it is expected further investigations into new funding tools will occur ahead of the start of construction of higher cost components of the LGWM programme (which could include some City Streets components) as part of clarifying the level of spend the funding partners can commit to.

The Council partners have included funding for the next phases of work expected over the next few years in their long-term plans using their existing rating tools. The City Streets package has also been included in the Wellington RLTP and identified alongside other LGWM activities as a significant activity, Priority 6.

Waka Kotahi is expected to fund the central government share from the NLTF for the next phase of work. This funding requirement is expected to be included in the National Land Transport Programme (NLTP).

13.1.3. Funding partner cost shares

Project costs need to be allocated to funding partners including each local Council (which was not determined at the IP stage). This allocation sets out what each funding partner must fund and over what period. Cost shares may vary by phase (business case development, implementation and operational costs).

The final decision on cost allocation, across the programme, has not yet been made.

There is an explicit LGWM programme work stream to provide funding partners with analysis to assist them in agreeing the more enduring agreement for cost allocation. That analysis and partner agreement is expected to be developed once preferred options have been identified and using the analysis from subsequent City Streets SSBCs.

This cost allocation is expected to consider the implications for various groups including who benefits and who should bear costs.

For the next phases (SSBCs & targeted improvements) of the City Streets package the interim agreed funding arrangement, documented in schedule 5 of the 2020 LGWM Relationship and Funding agreement (RFA) to allocate cost shares to funding partners, will be used.

13.2. Capital cost assumptions

A high-level cost estimation approach has been adopted for the IBC. This approach is based on:

- Unit cost estimates for individual interventions included in the intervention toolbox (ref. Appendix F)
- 42% of unit costs for project to represent overhead costs such as detailed design, communications and engagement, and traffic resolutions.

This approach entails:

• Identifying the quantity (number, distance, etc) of each intervention included in each scenario.

- Multiplying quantities by unit cost rates to obtain total estimated costs.
- Adding project overhead costs.

Actual costs are likely to vary from these indicative cost estimates for a variety of reasons, including hard-to-predict local cost factors like utility relocation and decisions to implement a non-standard design. As a result, a low-high range of unit cost rates is provided to provide an indication of the potential degree of variation between locations. Mid-point cost estimates are used in the indicative cost benefit analysis, with sensitivity testing based on the high end of the cost range.

The following sub-sections summarise the basic approach with actual unit cost rates included within the intervention toolbox. In general, unit cost rates are drawn from recent projects undertaken in Wellington, with an allowance for recent cost inflation where relevant.

13.2.1. Intervention costs

Various sources of data were used to develop cost estimates for the intervention including:

- Bus Priority Indicative Business Case
- ViaStrada's draft Facility Cost Estimate Tool developed for the Waka Kotahi Cycling Network Guidance.⁴⁸
- Other LGWM projects
- Wellington City Council sourced unit cost rates from recent projects

These estimates are summarised in Appendix D.

13.2.2. Other costs

Whilst in general it has been assumed that the package can be developed to largely fit within the road reserve some limited property acquisition contingency has been allowed for as shown in Table 22. Further, given the indicative nature of interventions forming the IBC to inform investment priorities a programme contingency of \$63m is proposed at this point in time.

⁴⁸ https://www.nzta.govt.nz/walking-cycling-and-public-transport/cycling/cycling-standards-andguidance/cycling-network-guidance

13.2.3. Project revenues

The fare implications of City Streets on increased mode share by public transport have not been estimated for the IBC.

13.3. Cost estimate

The recommended City Streets programme has a forecast P50 capital cost estimate of \$284m. We have also estimated the potential upper limit cost of the programme based on the upper bound cost estimate of all potential interventions at \$471.9m. This has been estimated using the upper limit cost of toolkit interventions for the recommended programme as presented in Appendix D.

Table 22 shows the capital cost estimate (P50) for the recommended programme in base year values (\$2020) and do not account for inflation or discounting.

13.4. Cost Certainty

Cost estimates are indicative and based on multiple existing sources, such as WCCsourced unit cost rates with limited adjustments for site-specific known issues. There are therefore risks associated with the indicative/preliminary cost estimates adopted for the IBC. These have been tested via sensitivity testing reported in Section 10.2.1.

13.5. Cashflow forecast

An indicative forecast for the City Streets Programme is shown in Table 23. This is based on the timing of activities as presented in the Economic Case (Chapter 12, Table 20) and indicative programme included in the Management Case (Chapter 17, Figure 31).

Table 22 – Pre-Implementation / Implementation costs for recommended programme

Cost source	Total expected project cost (\$)
SSBC	\$24,050,000
Main Consultancy/Contract	\$16,600,000
Additional Design (from Pre-imp)	\$1,370,000
Reviews & Audits (Safety, Peer, Cost)	\$520,000
Engagement / Consultation	\$3,060,000
City Streets internal management costs PM's etc	\$2,500,000
Pre-Implementation	\$21,895,000
Main Consultancy/Contract	\$18,242,500
Reviews & Audits (Safety, Peer, Cost)	\$632,500
Engagement / Consultation	\$530,000
City Streets internal management costs PM's etc	\$2,490,000
Implementation	\$238,055,000
Main Consultancy/Contract	\$234,530,000
City Streets internal management costs PM's etc	\$3,525,000
Contingency Property	\$3,000,000
Programme Contingency	\$63,000,000
Total Programme Cost	\$350,000,000

Table 23 – City Streets draft cashflow forecast by NLTP period (\$m) (P50 excluding contingencies)

	NLTP Period July 2021 – June 2024												
	Jul-21	Oct-21	Jan-22	Apr-22	Jul-22	Oct-22	Jan-23	Apr-23	Jul-23	Oct-23	Jan-24	Apr-24	Total
SSBC	1.15	1.19	2.85	2.85	2.74	2.15	1.26	1.26	0.40	0.40	0.40	0.40	17.06
Pre- Implementation	-	0.59	0.59	0.23	0.36	0.91	2.11	2.11	2.37	1.05	1.05	-	11.37
Implementation	-	-	0.93	2.45	2.45	2.45	2.92	2.92	3.97	10.12	10.12	14.94	53.28
TOTAL	1.15	1.78	4.38	5.54	5.56	5.51	6.29	6.29	6.74	11.56	11.56	15.34	81.71

	NLTP Period July 2024 – June 2027												
	Jul-24	Oct-24	Jan-25	Apr-25	Jul-25	Oct-25	Jan-26	Apr-26	Jul-26	Oct-26	Jan-27	Apr-27	Total
SSBC	-	-	1.30	1.30	1.30	1.30	0.90	0.90	-	-	-	-	7.00
Pre- Implementation	0.36	0.36	0.36	-	-	-	0.55	0.55	2.03	1.48	1.48	1.48	8.62
Implementation	14.01	14.01	14.01	8.47	6.45	6.45	12.00	7.18	7.18	10232	4.68	4.68	109.40
TOTAL	14.36	14.36	15.66	9.77	7.76	7.76	13.45	8.63	9.21	11.71	6.16	6.16	124.97

	NLTP Period July 2027 – June 2030												
	Jul-27	Oct-27	Jan-28	Apr-28	Jul-28	Oct-28	Jan-29	Apr-29	Jul-29	Oct-29	Jan-30	Apr-30	Total
SSBC	-	-	-	-	-	-	-	-	-	-	-	-	
Pre- Implementation	-	-	-	-	-	-	-	-	-	-	-	-	
Implementation	9.85	5.17	5.17	5.17	5.17	5.17	5.17	8.63	8.63	8.63	8.63	-	75.41
TOTAL	9.85	5.17	5.17	5.17	5.17	5.17	5.17	8.63	8.63	8.63	8.63	-	75.41

Commercial case

14. Commercial case - overview

This section provides a high-level assessment of the potential for professional services and contractors to deliver the infrastructure improvements associated with the City Streets package. A programme procurement strategy has been developed and a City Streets procurement plan will be completed prior to funding be requested.

14.1. Commercial considerations

The City Streets programme is reasonably generic in nature and comparable to other PT, cycling, walking and amenity improvements that have been delivered in Wellington and across the country in urban environments. As such no capability constraints are envisaged. There could be market constraints within Wellington if activities are not programmed and procured within the wider LGWM context or without regard to wider sectors' procurement activities. It is anticipated that expertise will be required for City Streets in the areas of:

- Public engagement and communications
- Multi-modal design in constrained corridors

14.2. Procurement approach – next phase

Whilst the activities forming the City Streets package are relatively standard in nature there are several approaches which could be adopted to the procurement of professional services for the next stages of development.

In developing the proposed packages and programme for the next phase of SSBCs (as outlined in the Economic Case - Chapter 12, Table 20) an initial procurement options assessment for delivery of the SSBCs in Tranche 1 has been undertaken which considered four professional service delivery options against seven criteria.

14.2.1. Delivery options

Four delivery options have been considered:

- Individual tender Professional services for each individual SSBC are procured independently.
- Panel A panel of suppliers is appointed on a generic scope basis and project assigned to them subsequent to appointment with further work dependent upon supplier performance.
- Bi-procurement Two suppliers are selected for 2 predefined packages of work with the 'winning' supplier being awarded the main package and the runner up being awarded the second package. Both with the ability to vary in additional SSBCs (e.g., Tranche 2) dependent upon performance.
- Alliance The alliance delivery model is a relationship-style arrangement, that brings together the client and one or more parties to work together to deliver the project, sharing project risks and rewards. Collaborative procurement methods are usually used for highly complex or large infrastructure projects that would be difficult to effectively scope, price and deliver under a more traditional delivery model.

14.2.2. Procurement considerations

Each of the delivery options has been considered against seven criteria:

- Speed to procure.
- Anticipated quality of the deliverable
- Likely value for money of the arrangement to the LGWM partners
- The markets capacity to respond to the approach.
- The LGWM programmes capacity to run the procurement approach efficiently and effectively.
- The LGWM programmes ability to deliver the projects under that procurement approach effectively and efficiently.
- The likely attractiveness of the approach to the market

Table 24 below shows the outcome of the assessment of the delivery options. The assessment suggests that a bi-procurement approach is preferable currently. The final procurement approach will be confirmed in the City Streets procurement plan.

Table 24 – Delivery options draft assessment

	Individual tender	Panel	Bi- Procurement	Alliance
Speed to procure	x	$\checkmark\checkmark$	$\checkmark\checkmark$	×
Quality	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\sqrt{\sqrt{\sqrt{1}}}$
Value	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	x
Market capacity to respond	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
LGWM ability to procure	×	$\checkmark\checkmark$	$\checkmark\checkmark$	x
LGWM ability to manage	\checkmark	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$
Attractiveness to Market	×	\checkmark	$\checkmark\checkmark$	$\sqrt{\sqrt{2}}$
Score	5	12	14	7
Rank	4	2	1	3

Management case

15. Management case – Overview

Management of the City Streets programme will fall under the wider programme governance, management, funding and delivery arrangements of the LGWM programme.

Presently, many of those arrangements are in a state of flux as actions in response to the programme Health Check are resolved and embedded. It is within that context that, the management case below should be considered which presents our best estimate of the governance structures, project team and timelines moving forward.

16. Governance structure and project roles

The next phases of City Streets (Tranche 1) are being delivered by the LGWM programme with LGWM governance and decision-making process being applicable. The next stage of the programme is the Tranche 1 SSBCs/SSBC-lites, studies and Targeted Improvements package. Figure 30 below outlines the team and governance structure envisaged to deliver that next stage of City Streets with decisions on recruitment and filling roles still to be taken.

Supporting the package leads and project managers is a Technical Advisory group made up of technical expert representatives from partner organisations whose role is to provide guidance to the team as projects evolve. This structure is based on our current understanding of deceision making within the LGWM programme which is still evolving as actions are taken in response to the LGWM programme health check. The final decision making and governance structure for the City Streets Tranche 1 activities would align to the LGWM programme wide governance and delegated decision making frameworks as they are adopted.

16.1. Integration across City Streets

Integration across City Streets will be maintained through the close working of the City Streets project managers who will oversee the whole package along with a consistent package support team. Consistency of external advice across City Streets will be provided through the Technical Advisory Group which will be consistent across all activities. In addition, the LGWM programme is currently working on a preferred way forward for overall programme integration to provide further direction and guidance to City Streets and other programme components on how they will integrate with each other.

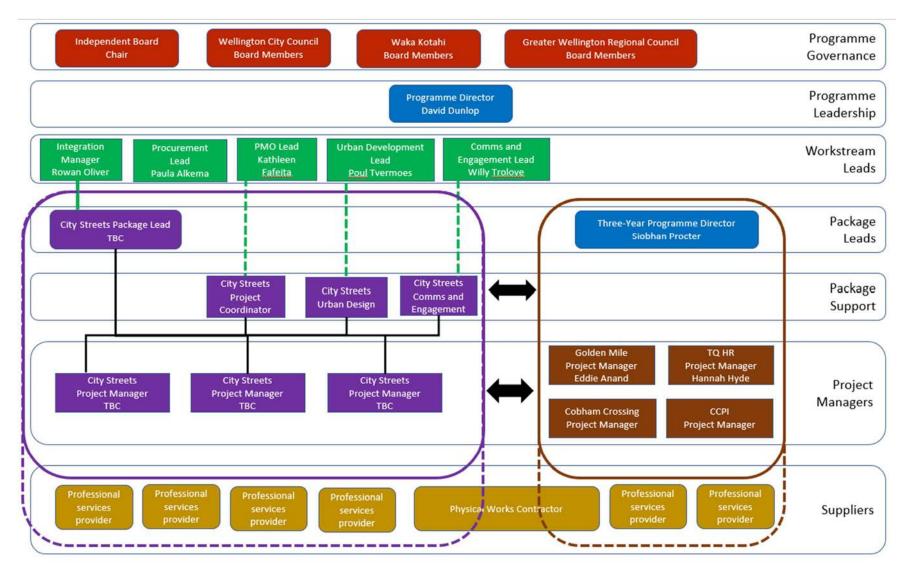


Figure 30: City Streets Tranche 1 Team Structure

17. Indicative programme and next steps

An indicative programme for Tranche 1 of City Streets has been developed for the as shown in Figure 31.

The City Streets Package Lead will be accountable for the immediate next steps to progress to the SSBC stage of City Streets is outlined in Table 23 below.

Table 25 – Setting up the next phase of City Streets

Activity	Completion Date					
IBC & Funding Approvals						
IQA	July 2021					
Council & Waka Kotahi IBC Approvals and Endorsement	August - October 2021					
Funding Approval	October 2021					
Tranche 1 Scoping and Procurement	Tranche 1 Scoping and Procurement					
Targeted Improvements SSBC Lite procured & project	July 2021					
commenced						
LGWM SSBC Process defined	August 2021					
SSBC Scoping complete	August 2021					
City Streets Procurement Plan & RFP approved	September 2021					
Tender Period	September/October					
	2021					
Tender Evaluation Period	October 2021					
Naming of Preferred Tenderer	Late October 2021					
Award of Contract	November 2021					
City Streets Team Establishment						
Wider City Streets Team resources confirmed and	October 2021					
appointed						

17.1.1. Tranche 1 funding request

In conjunction with IBC approvals/endorsement it is desirable to obtain funding approvals to allow Tranche 1 activities to progress. This includes funding for all Tranche 1 SSBCs/SSBC-lites and for the implementation funding for the Targeted Improvements. The cost breakdown for the funding request is as follows:

- SSBC Development \$17.1m
- Targeted Improvements Pre-Implementation \$1.6m
- Targeted Improvements Implementation \$9.4m
- Contingency \$6m (21%)

Figure 31: City Streets Tranche 1 Indicative Programme

	City Streets	Next Phase Activity	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
e	Johnsonville	Johnsonville – Ngauranga PT											
ars	Ngauranga Gorge	Improvements SSBC											
er c		Pre-Implementation											
i ru		Implementation											
vith	Targeted Improvements (10-year	BPAP Targeted Improvements SSBC											
art v	programme)	lite Pre-Implementation											
art		Implementation											
St		· · · · · · · · · · · · · · · · · · ·											
ruc		Other Targeted Improvements SSBC											
nec		Pre-Implementation											
		Implementation											
Tranche 1 – Immediate Start with partner desire to commit to construction start within 3 Years	City to Karori Tunnel	Bowen Street SSBC											<u> </u>
L che		Pre-Implementation		-									
Lan o co		Implementation											
<u> </u>	Taranaki St to John St	Taranaki St to John St SSBC											
		Pre-Implementation											
		Implementation											
	Willis/Victoria Walking/Cycling	South-West CBD Improvements SSBC											
tart	Connection												
e Si	Ghuznee Walking/Cycling	Pre-Implementation											
SSBC Immediate Start	Connection Dixon Walking/Cycling Connection	Implementation											
me	City to Kilbirnie (via Hataitai)	Shelly Bay Road to Troy St PT											
<u>=</u>		Improvements SSBC											
BBC		Pre-Implementation											
S S		Implementation											
	Bus network & operational	A specialist contract covering analysis											
Jch.	Improvements	and assessment of bus network and											
Tranche 1		operational improvements as inputs into Tranche 1 SSBCs											
	Quays Route (including second PT	Progress Feasibility testing of the											
	spine)	Northern CBD Network Operating Plan											
	Featherston Walking/Cycling												
	Connection												

	City Streets	Next Phase Activity	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
					-			-					
۵	Basin to Newtown	South Central SSBC			<u> </u>								
and route	Kent/Cambridge and Basin	Pre-Implementation	1 [
L D	Taranaki	Implementation	1										
n ar	Miramar Town Centre	City to Miramar Town Centre SSBC											
Lu Lu	City to Kilbirnie (via Hataitai)	Pre-Implementation	1										
onf		Implementation											
nal g c	Newtown to Berhampore	Newtown to Berhampore SSBC											
itio		Pre-Implementation	1										
STE		Implementation											
1 – Conditional on form a of MRT being confirmed	Quays Route (including second PT spine)												
he	Featherston Walking/Cycling	SSBC											
Tranche		Pre-Implementation	1										
⊢ F		Implementation	1										
	The Terrace	Terrace SSBC											
an ding		Pre-Implementation	1										
fune ess evie		Implementation	1										
ogr ogr	Karori Tunnel to Karori	Karori Tunnel to Karori SSBC											
a pr		Pre-Implementation	1										
tto		Implementation	1										
pro	Vivian Walking/Cycling Connection	Vivian/Tory Precinct SSBC											
Sub		Pre-Implementation	1										
alse -		Implementation	1										
Tranche 2 – Subject to future funding approvals considering progress on Tranche 1 and programme review	City to Karori Tunnel Bo	Bowen Street to Karori Tunnel SSBC						1					
anc		Pre-Implementation	1										
т ^е г		Implementation	1										

18. Role of Network Operating Framework

WCC and partners have developed a Network Operating Framework (NOF) for Wellington which recognises the diverse needs of road users. With a strategic and collaborative approach, stakeholders and network user groups have input into the development of a framework to understand the needs of users in the existing network to support a focus on future schemes that provide for the needs and demands of users.

The NOF provides guidance on how to respond to land use and transport network interactions in the road network through enabling trade-off decisions between modes on the network. As such, at the next phase of implementation of CS, the NOF should be adopted as the reference case for defining modal priorities for the purpose of developing DBC's and assessing options.

It should be noted that the network aspirations in the NOF reflect a 20-year land use context with necessary assumptions around MRT routes as identified by the LGWM PBC. Subsequent investigations will need to review these baseline assumptions and significance of any changes on the agreed NOF as part of subsequent investigations.

19. Adapting to change

In the immediate future it will be necessary to review the Tranche 1 activities in the recommended City Streets programme at the time that the MRT form and route is confirmed. This is recognised in that the SSBC development of these activities is proposed to be held until MRT is confirmed with funding release conditional on a review of the scope / need for those components considering any MRT decision. This activity is anticipated to occur between October 2021 and March 2022.

Further, over the 9-year timeframe estimated for the City Streets programme it is highly likely some of the assumptions the programme is based upon will change — particularly in relation to costs and benefit realisation. Where material change occurs, the City Streets programme will need to be appropriately adjusted to reflect the materiality of the change(s) that have occurred.

Through ongoing monitoring and reporting of the key performance indicators (KPIs) and other measures included in the benefits realisation, the City Streets project team will be able to provide advice to the LGWM partners to consider what adjustments are necessary to achieve the programme outcomes, and their significance including advice

around expanding or reducing the programme. It is recommended that the programme undergo a formal review every 3-years as a precursor to subsequent RLTPs.

20. Stakeholder engagement

LGWM is preparing to engage with the public in late 2021 on the longer-term elements of the programme including mass rapid transit, strategic highway improvements, urban development and travel demand management.

The City Streets project team will provide information to support this engagement. It is envisaged that the wider City Streets package will be published as part of the public engagement to show how it contributes to the overall programme vision and objectives.

Before this public engagement, we intend to inform stakeholders and the community about the preferred corridors in the city streets package.

As each SSBC goes through its detailed development phase, targeted engagement with stakeholders and communities will occur. This will include formal consultation on preferred options for each corridor. Feedback from the consultation will help guide design decisions for each project.

21. Iwi Partnerships

LGWM is working in partnership with iwi as part of the 20–30-year programme. Iwi with interests in Wellington are:

- Taranaki Whānui ki te Upoko o te Ika represented by the Port Nicholson Block Settlement Trust; and
- Ngāti Toa represented by Te Rūnanga o Toa Rangatira

An iwi partnership working group, comprising members of Taranaki Whānui ki te Upoko o te Ika and Ngāti Toa, has been established to help the programme appropriately consider mana whenua perspectives and support broader iwi engagement.

Both iwi also participate in the governance of the programme as members of the Let's Get Wellington Moving Governance Reference Group. As each City Streets SSBC/SSBC-lite goes through its detailed development phase, close engagement with iwi will occur to ensure that the businesses cases appropriately consider and provide for mana whenua perspectives. Of particular interest will be how the SSBCs/SSBC-lites incorporate the mana whenua values that have been provided to LGWM. This may

include, for example, how mana whenua values are incorporated into the design of particular improvements and how pre-European history of place can be better expressed. Other opportunities and issues will be navigated in partnership with iwi during the detail development phase for each individual SSBC/SSBC-lite.

22. Project management

22.1. Cost management

Financial management shall be undertaken in accordance with the relevant LGWM procedures.

22.2. Change control and issues management

A change control and issues register shall operate as an extension to the risk register and track issues as they arise.

Change control and issues management will be undertaken in accordance with:

- LGWM / Partner organisations' Significance Policy
- LGWM / Partner organisations' Corporate Risk Management Policies
- Conditions of contract for project specific issues

23. Key Risks

Table X below presents key risks (High and Critical) for the next phase of the project. A more detailed risk register is included in Appendix.

Table 26 – Critical/High Risks

Risk Description (include whether this is a threat or an opportunity)	Risk Cause(s)	Risk Consequence(s)	Current Risk Likelihood	Current Risk Consequence	Consequence Category	Current Controlled Risk Level	Planned Risk Trmt Actions	Residual (Target) Risk Likelihood	Residual (Target) Risk Consequence	Residual (Target) Risk Level
CS outcomes misaligned due to changes in other components of the LGWM programme not being realised.	Other LGWM components are in the process of being developed and scope uncertainty remains	CS elements may not optimally integrate with the City or LGWM programme.	Likely	Severe	Delivery	Critical	The CS projects have been staged around key decisions of other LGWM components such as MRT route and mode decisions, also programme reviews are proposed to revisit the optimal package at key milestones	Possible	Moderate	Medium
Partners/stakeholders desired levels of service from CS components may exceed what was envisaged by the IBC and allowed for in the indicative budget.	Partner and stakeholder expectations of "Gold Standard" quality for all investments raised as a result of other high-profile projects such as Golden Mile.	Undermined social licence if expectations not managed and/or project costs escalate in response to expanded scope either reducing the programme overall or increasing total programme costs	Likely	Moderate	Cost	High	 Ongoing communication with stakeholders and partners on the key assumptions underlining the CS package and risks of scope creep The scope of the SSBC/SSBC- lite will be transparent about the LoS assumptions underpinning the IBC and expectations around moderate solutions up front. 	Possible	Moderate	Medium
Upon commencing SSBCs/SSBC-lite the envisaged improvements cannot be fitted into the road reserve.	No physical design has been undertaken as part of the prioritising of corridors for the IBC. Indicative assumptions about modal improvements have been made which might not be feasible when investigated at the next phase	There may need to be level of service compromises or modal priority decisions taken which could delay projects or reduce the outcomes realised.	Likely	Moderate	Delivery	High	 The project will be guided by the Network Operating Framework in resolving modal priorities The SSBC scoping process will aim to consider this risk in setting out its requirements. 	Likely	Minor	Medium

Risk Description (include whether this is a threat or an opportunity)	Risk Cause(s)	Risk Consequence(s)	Current Risk Likelihood	Current Risk Consequence	Consequence Category	Current Controlled Risk Level	Planned Risk Trmt Actions	Residual (Target) Risk Likelihood	Residual (Target) Risk Consequence	Residual (Target) Risk Level
Pursuing Tranche 1 other components of the CS/LGWM programme become compromised.	Individual CS projects do not check-in with the wider package or programme to ensure alignment and overall programme optimisation	Outcomes are undermined and quality of downstream projects is compromised	Likely	Moderate	Delivery	High	1. CS taken forward as a package with professional services procured in such a way that a package and best for LGWM programme approach is a requirement.	Unlikely	Moderate	Medium
CS activities are not integrated with WCC/Utility providers improvements	The package does not engage with infrastructure partners to understand their improvement programmes and outcomes to seek win-win value opportunities	Potential rework and additional cost in remedying projects or integrating projects at a late stage with suboptimal outcomes	Likely	Severe	Delivery	Critical	LGWM and CS liaise closely with stakeholders and partners on respective plans as projects progress.	Possible	Moderate	Medium
Project partners confidence in delivery of CS is undermined through slow delivery	Partners perceive delivery to date as suboptimal and have expectations of this improving following a programme review	If partners continue to perceive delivery as slow or poorly aligned to their organisational goals, they could choose to invest in their own activities undermining collaborative transport system planning delivering sub-optimal outcomes for Wellington.	Likely	Moderate	Stakeholders	High	Establish a realistically resourced CS package team and baseline programme and engage with partners on a regular basis on progress.	Likely	Moderate	High

Risk Description (include whether this is a threat or an opportunity)	Risk Cause(s)	Risk Consequence(s)	Current Risk Likelihood	Current Risk Consequence	Consequence Category	Current Controlled Risk Level	Planned Risk Trmt Actions	Residual (Target) Risk Likelihood	Residual (Target) Risk Consequence	Residual (Target) Risk Level
Partners/stakeholder desired levels of investment in non- transport related outcomes compromise the programme outcomes	There is ongoing misalignment between partners on the role of place- making and the level of investment in placemaking the LGWM should make. This was unresolved in the IBC.	Undermined social licence if expectations not managed and/or project costs escalate in response to place making expectations either reducing the programme overall or increasing total programme costs	Likely	Severe	Cost	Critical	SSBCs will identify and monetise the place-making costs and benefits so that these can be appropriately apportioned and used as a basis for evidence- based discussions between partners.	Likely	Moderate	High
Poor social licence for the programme compromises programme delivery	Public confidence in the CS package is undermined due to quality expectations set by Golden Mile and/or wider engagement experiences of the public.	Projects are delayed by engagement or are unable to progress due to lack of buy-in to the solutions by the public and stakeholders.	Likely	Severe	Public/ Media	Critical	Comms and engagement strategy to be developed to proactively engage with the public on the purpose of CS and its outcomes.	Possible	Severe	High
Slower than desired delivery of the CS programme due to LGWM/industry resource constraints.	There are existing pressures on the industry making it difficult to compete on attracting the right level of capability and skill both within the programme and professional services market	Under resourced programme or consultancy team could lead to delay, churn and rework undermining the cs package and partner/stakeholder confidence.	Likely	Moderate	Delivery	High	 Commence LGWM project team recruitment early Develop a procurement strategy which takes cognisance of market pressures amongst other considerations to minimise the risk 	Possible	Moderate	Medium

City streets indicative business case

Risk Description (include whether this is a threat or an opportunity)	Risk Cause(s)	Risk Consequence(s)	Current Risk Likelihood	Current Risk Consequence	Consequence Category	Current Controlled Risk Level	Planned Risk Trmt Actions	Residual (Target) Risk Likelihood	Residual (Target) Risk Consequence	Residual (Target) Risk Level
Consultation on the CS programme (alongside LGWM consultation) could be confusing and inconsistent to stakeholders and the public	With a number of projects ongoing both in the LGWM programme and across partner organisations the public/stakeholders could become confused reducing the impact of key messaging	CS projects could be delayed due to the need to re-engage with the public/stakeholders to ensure messaging gets through and appropriate levels of involvement have occurred.	Likely	Moderate	Public/ Media	High	Comms and engagement strategy developed and managed centrally from within the LGWM programme to ensure optimal coverage and penetration of LGWM messaging and consistency with partner programmes.	Possible	Moderate	Medium
Risk that CS improvements are not futureproofed for future PT network changes and growth	SSBCs lack a future focus and are heavily biased towards infrastructure solutions	CS projects lack futureproofing and are not adaptable to growth or change in PT network services reducing the overall long-term benefits of the CS package.	Likely	Moderate	Delivery	High	 The SSBCs have a requirement to consider the full range of interventions and include GWRC as a partner in terms of input in relation to future patronage growth and service adaptation. A specific project is included in the CS package to support GWRC PT service analysis and advice to CS 	Unlikely	Moderate	
Indicative solutions in IBC significantly under scoped when investigated during SSBC phase meaning IBC costs unrealistic	The IBC has used a desk based 'sample' solution approach rather than detailed investigation of solutions with 'typical' unit costs provided by WCC.	The cost of projects is significantly underestimated leading to reduced scope or increased cost of the CS package.	Possible	Severe	Delivery	High	1. Significant contingency allowed for at the project and package level within the IBC	Possible	Moderate	Medium

Risk Description (include whether this is a threat or an opportunity)	Risk Cause(s)	Risk Consequence(s)	Current Risk Likelihood	Current Risk Consequence	Consequence Category	Current Controlled Risk Level	Planned Risk Trmt Actions	Residual (Target) Risk Likelihood	Residual (Target) Risk Consequence	Residual (Target) Risk Level
Outcomes delivered by Tranche 1 or WCC early projects don't meet public/stakeholder expectations undermining support for later components of the CS programme [Same as Risk 3?]	Partner and stakeholder expectations of "Gold Standard" quality for all investments raised as a result of other high-profile projects such as Golden Mile.	Undermined social licence if expectations not managed and/or project costs escalate in response to expanded scope. This could lead to either increased scope and cost to deliver to expectations or projects not commencing	Likely	Severe	Delivery	Critical	1. Ongoing communication with stakeholders/partners and public on the key assumptions and outcomes underlining the CS package	Possible	Severe	High
Changing partner priorities impact the timing and sequencing of delivery, undermining delivery of the optimal programme	Issues of the day become a focus for partners due to stakeholder/public pressures	Regular re-sequencing of the CS package could undermine the optimal delivery of the programme costing money and time and reducing package outcomes	Likely	Moderate	Delivery	High	1. Gain support from partners early on the programme and seek to 'lock it in'?????	Possible	Moderate	Medium
SSBC/SSBC-lite take longer than anticipated delaying delivery	Projects become over scoped, or scope changes occur mid-business case or supplier capability is insufficient for the job at hand	Delay and/or cost and/or sub-optimal business cases with additional risk passed to the pre- implementation phases	Likely	Moderate	Delivery	High	 Well scoped SSBCs with buy in of partners locked in at the start Clear change processes defined within the LGWM programme Procurement focussed on quality of consulting teams 	Possible	Minor	Medium
CS enhancements need to go through a traffic resolutions process which is outside LGWM control. If council disagree with the proposal, they could	LGWM is not accountable for the traffic resolutions process. If WCC do not like CS projects they can use the resolutions process	CS projects are not implemented or implemented in the form proposed by LGWM	Possible	Severe	Delivery	High	Early and regular engagement with partners on the scope of CS projects	Unlikely	Moderate	Medium

Risk Description (include whether this is a threat or an opportunity)	Risk Cause(s)	Risk Consequence(s)	Current Risk Likelihood	Current Risk Consequence	Consequence Category	Current Controlled Risk Level	Planned Risk Trmt Actions	Residual (Target) Risk Likelihood	Residual (Target) Risk Consequence	Residual (Target) Risk Level
not approve the	to stop									
changes	implementation.									
An inconsistent benefits realisation framework for CS makes it difficult to consistently measure and articulate the outcomes delivered by the package.	The benefits framework for the LGWM programme has not been established to provide a consistent basis against which to measure the benefits delivered by the programme elements	The outcomes delivered by CS cannot be told in a consistent manner and/or resources not made available for the appropriate monitoring due to lack of an overarching benefits realisation plan for the programme.	Likely	Moderate	Legal/ Compliance	High	Programme to establish an overarching benefits realisation framework and costed and funded monitoring programme to demonstrate the outcomes developed by the LGWM programme and its components.	Unlikely	Moderate	Medium
CS outcomes for the Central City will be dependent upon the effectiveness of Golden Mile improvements	The CS central city improvements are closely integrated with Golden Mile and MRT from a transport system perspective	The outcomes of CS, Golden Mile and MRT are undermined through lack of integration and best- for-transport-system perspective being applied to synergistic activities	Possible	Severe	Delivery	High	Overarching LGWM programme integration team to have oversight of LGWM components and provide guidance and direction as necessary	Possible	Moderate	Medium
Opportunity to work with other partners (e.g., Wellington Water) to seek co- funding where appropriate	Across the city and utility partners there is significant works planed over the duration of the City Streets package	Significant potential for mutual cost savings and disruption minimisation to the public.	Likely	Moderate	Delivery	High	Programme to close liaise with partners to identify opportunities to combine programmes and negotiate appropriate cost shares where opportunities arise.	Possible	Minor	Medium

24. Benefits realisation and lessons learnt

An indicative monitoring regime to assess the benefits of the City Streets Package is set out in Table 27. Further work is required to be undertaken by the LGWM programme to develop a programme benefits realisation framework which brings together all components of the programme to provide a consistent framework and monitoring regime. This would ensure that LGWM activities outcomes are measured consistency and provide efficiencies to the programme in terms of resources and costs associated with the ongoing monitoring regime. Monitoring might also evolve throughout the package delivery as technology options for monitoring and operations are refined.

Lessons learned reviews will be undertaken at agreed times throughout the respective contracts and as part of the close-out reports for the project. It will be the responsibility of the LGWM project managers to complete these reviews with the respective suppliers.

Table 27: City Streets benefits realisation

Investment objectives	Key performance indicators	Measurement	Potential monitoring regime
1. Create a safer, more	KPI 1.1: Urban Amenity	LGWM Amenity Index (monitor)	Periodic – Programme wide
accessible, connected, and livable central city with	KPI 1.2: Pedestrian level of service	Pedestrian travel time crossing intersections / on key routes	Annual assessment
attractive streets and places for people to enjoy		Perceptions of levels of service for pedestrians (monitor)	Periodic – Programme wide
2. Reduce reliance on private vehicle trips by making	KPI 2.1 Travel time reliability	Travel time reliability for public transport (buses) across the Wellington region, and on key strategic bus routes.	Ongoing through in bus data
trips by making strategic PT corridors safe, more efficient, and reliable, with easy connection	KPI: 2.2 Comparative travel times between modes	Travel time (median) for key modes and routes	Annual – programme wide
points	KPI: 2.3 PT network reliability	To be confirmed – will be drawn from model assessment based on real- time bus network data.	Ongoing through in bus data
		Percentage of scheduled bus services that actually ran as tracked by Metlinks' RTI and Snapper systems (monitor)	
		Percentage of scheduled Metlink bus services that depart from origin, leaving between one minute early and five minutes late (monitor)	

Investment objectives	Key performance indicators	Measurement	Potential monitoring regime
3. Reduce reliance on private vehicle trips by creating connected, safe, and efficient	KPI: 3.1 The quality of cycling infrastructure	Infrastructure Level of Service along and around the corridor relative to target LoS	Annual assessment of cycle facilities as part of WCC customer satisfaction survey
access by bike	KPI: 3.2 New cycle trips	Automatic pedestrian / cycle counters.	Ongoing
4. Create a low carbon future transport system which is more resilient,	KPI: 4.1 Opportunities for urban development and value uplift	Market assessment of key transport corridors	Periodic
supports growth and is adaptable to disruption by providing safe and attractive	KPI: 4.2 DSIs for all transport users by mode	Analysis of Crash Analysis System (CAS) data using crash estimation compendium methods	Annual - programme wide
transport choices	KPI: 4.3 Mode share in the central city	Number of people travelling across the central city screenline by mode	Ongoing - Automatic pedestrian / vehicle / cycle counters.
	KPI: 4.4 Mode share into and within the central city	Person kilometres travelled by mode into and within the central city	Ongoing - Automatic pedestrian / vehicle / cycle counters. Periodic travel to work surveys
	KP 4.5 Transport related CO_{2e} emissions in the city and region	CO _{2-e} emissions (City and region) based on fuel sales data (regional) or through vehicle data counts for specific routes.	CO_{2-e} emissions (city and region) based on transport model outputs and actual traffic data and/or CO_{2-e} emissions (city and region) per person kilometre travelled.

Appendix A: Glossary of initialisations

Item	Description	
DMS	Document Management System	
DBC	Detailed Business Case	
EA	Early Assessment	
GWRC	Greater Wellington Regional Council	
H&S	Health & Safety	
IBC	Indicative Business Case	
10	Investment Objective	
IP	Indicative Package (from PBC)	
KPI	Key Performance Indicator	
LGWM	Let's Get Wellington Moving	
LOS	Level of Service	
LS	Lump Sum	
MCA	Multi-Criteria Analysis	
MRT	Mass Rapid Transit	
РВС	Programme Business Case	

ltem	Description
PS	Provisional Sum
RPI	Recommended Programme of Investment (from PBC)
SH	State Highway
ТВD	To be determined
TWG	Technical Working Group (from project partners NZTA, WCC and GWRC)
WAU	Wellington Analytics Unit
WBS	Work Breakdown Structure
WHS	Workplace Health and Safety
WCC	Wellington City Council
WTA	Wellington Tunnels Alliance
Client	Let's Get Wellington Moving
Contracting Authority	Waka Kotahi NZ Transport Agency

Appendix B: Central City sections

ID	Segment
CC-001	Abel Smith St - Cuba St -> Victoria St
CC-002	Abel Smith St - Willis St -> The Terrace
CC-003	Abel Smith St - Taranaki St -> Cuba St
CC-004	Abel Smith St - Victoria St -> Willis St (Dead End)
CC-005	Barnett St - Cable St -> Waterfront (Dead End)
CC-006	Boulcott St - Willis St -> The Terrace
CC-007	Bowen St - Lambton Quay -> The Terrace
CC-008	Bowen St - The Terrace -> Tinakori Rd
CC-009	Bunny St - Featherston St -> Lambton Quay
CC-010	Bunny St - Waterloo Quay -> Featherston St
CC-011	Cable St - Barnett St -> Chaffers St
CC-012	Cable St - Chaffers St -> Oriental Pde
CC-013	Cable St - Jervois Quay -> Taranaki St
CC-014	Cable St - Taranaki St -> Tory St
CC-015	Cable St - Tory St -> Barnett St
CC-016	Chaffers St - Cable St -> Waterfront (Becomes Private)
CC-017	City to Sea Harris - Cable St -> Waterfront
CC-018	Courtenay PI - Taranaki St -> Tory St
CC-019	Courtenay PI - Cambridge Tce -> Tory St
CC-020	Cuba St - Abel Smith St -> Arthur St
CC-021	Cuba St - Arthur St -> Webb St
CC-022	Cuba St - Dixon St -> Ghuznee St
CC-023	Cuba St - Ghuznee St -> Vivian St
CC-024	Cuba St - Manners St -> Dixon St
CC-025	Cuba St - Vivian St -> Abel Smith St
CC-026	Cuba St - Wakefield St -> Manners St

ID	Segment
CC-027	Customhouse Quay - Hunter St -> Jervois Quay
CC-028	Customhouse Quay - Willeston St -> Hunter St
CC-029	Customhouse Quay - Jervois Quay -> Whitmore St
CC-030	Dixon St - Cuba St -> Victoria St
CC-031	Dixon St - Taranaki St -> Cuba St
CC-032	Dixon St - Victoria St -> Willis St
CC-033	Featherston St - Bunny St -> Whitmore St
CC-034	Featherston St - Mulgrave St -> Bunny St
CC-035	Featherston St - Whitmore St -> Hunter St
CC-036	Ghuznee St - Cuba St -> Taranaki St
CC-037	Ghuznee St - The Terrace -> Willis St
CC-038	Ghuznee St - Victoria St -> Cuba St
CC-039	Ghuznee St - Willis St -> Victoria St
CC-040	Hunter St - Lambton Quay -> Jervois Quay
CC-041	Jervois Quay - Harris St -> Hunter St
CC-042	Jervois Quay - Hunter St -> Post Office Sq.
CC-043	Jervois Quay - Post Office Sq> Customhouse Quay
CC-044	Jervois Quay - Taranaki St -> Cable St
CC-045	Jervois Quay - Cable St -> Harris St
CC-046	Karo Drive Cycleway - Willis St -> Buller St West (Dead End)
CC-047	Karo Drive Cycleway - Taranaki St -> Cuba St
CC-048	Karo Drive Cycleway - Basin -> Tory St
CC-049	Karo Drive Cycleway - Tory St -> Taranaki St
CC-050	Karo Drive Cycleway - Cuba St -> Victoria St
CC-051	Karo Drive Cycleway - Victoria St -> Willis St

ID	Segment
CC-052	Kent/Cambridge Tce - Pirie St -> Basin
CC-053	Kent/Cambridge Tce - Courtenay PI -> Pirie St
CC-054	Kent/Cambridge Tce - Wakefield St -> Courtenay Pl
CC-055	Lady Elizabeth Lane (PRIVATE) - Waterloo Quay -> Jervois Quay
CC-056	Lambton Quay - Bowen St -> Bunny St
CC-057	Lambton Quay - Stout St -> Bowen St
CC-058	Lambton Quay - Willis St -> Stout St
CC-059	Manners St - Cuba St -> Victoria St
CC-060	Manners St - Taranaki St -> Cuba St
CC-061	Manners St - Victoria St -> Willis St
CC-062	Mercer St - Willis St -> Victoria St
CC-063	Molesworth St - Lambton Quay -> Murphy St
CC-064	Molesworth St - Murphy St -> Tinakori Rd
CC-065	Mulgrave St - Molesworth St -> Thorndon Quay
CC-066	Oriental Pde - Cable St -> Herd St
CC-067	Oriental Pde - Herd St -> Evans Bay Pde
CC-068	Oriental Pde - Wakefield St -> Cable St
CC-069	Queens Wharf (PRIVATE) - Jervois Quay -> Waterfront (Dead End)
CC-070	Stout St - Lambton Quay-East -> Whitmore St
CC-071	Stout St - Whitmore St -> Bunny St
CC-072	Taranaki St - Karo Dr -> Webb St
CC-073	Taranaki St - Cable St -> Wakefield St
CC-074	Taranaki St - Waterfront (Dead End) -> Cable St
CC-075	Taranaki St - Ghuznee St -> Vivian St
CC-076	Taranaki St - Manners St -> Ghuznee St

Let's	GET	chment 1 to Repo	MOVING
			V

ID	Segment
CC-077	Taranaki St - Abel Smith St -> Karo Dr
CC-078	Taranaki St - Vivian St -> Abel Smith St
CC-079	Taranaki St - Wakefield St -> Manners St
CC-080	The Terrace - Bowen St -> Boulcott St
CC-081	The Terrace - Ghuznee St -> Abel Smith St
CC-082	The Terrace - Boulcott St -> Ghuznee St
CC-083	Thorndon Quay - Mulgrave St -> Moore St
CC-084	Tinakori Rd - Hutt Rd -> Molesworth St
CC-085	Tinakori Rd - Molesworth St -> Bowen St
CC-086	Tory St - Cable St -> Wakefield St
CC-087	Tory St - Courtenay PI -> Vivian St
CC-088	Tory St - Vivian St -> Karo Dr
CC-089	Tory St - Wakefield St -> Courtenay Pl
CC-090	Victoria St - Abel Smith St -> Karo Dr
CC-091	Victoria St - Dixon St -> Ghuznee St
CC-092	Victoria St - Hunter St -> Mercer St
CC-093	Victoria St - Karo Dr -> Webb St
CC-094	Victoria St - Manners St -> Dixon St

ID	Segment
CC-095	Victoria St - Mercer St -> Manners St
CC-096	Victoria St - Vivian St -> Abel Smith St
CC-097	Victoria St - Ghuznee St -> Vivian St
CC-098	Vivian St - Cuba St -> Victoria St
CC-099	Vivian St - Kent Tce -> Tory St
CC-100	Vivian St - Taranaki St -> Cuba St
CC-101	Vivian St - Tory St -> Taranaki St
CC-102	Vivian St - Victoria St -> Willis St
CC-103	Wakefield St - Cuba St -> Victoria St
CC-104	Wakefield St - Kent Tce -> Tory St
CC-105	Wakefield St - Taranaki St -> Cuba St
CC-106	Wakefield St - Tory St -> Taranaki St
CC-107	Waterfront - Bunny St -> Herd St
CC-108	Waterloo Quay - Bunny St -> Hinemoa St
CC-109	Waterloo Quay - Whitmore St -> Bunny St
CC-110	Webb St - Cuba St -> Victoria St
CC-111	Webb St - Taranaki St -> Cuba St
CC-112	Whitmore St - Featherston St -> Customhouse Quay

ID	Segment
CC-113	Whitmore St - Lambton Quay-East -> Stout St
CC-114	Whitmore St - Stout St -> Featherston St
CC-115	Willis St - Manners St -> Dixon St
CC-116	Willis St - Dixon St -> Ghuznee St
CC-117	Willis St - Ghuznee St -> Vivian St
CC-118	Willis St - Mercer St -> Manners St
CC-119	Willis St - Vivian St -> Abel Smith St
CC-120	Willis St - Lambton Quay -> Mercer St

Appendix C: Strategic bus route sections

ID	Segment
KC-01	Newtown: Adelaide Rd - John St to The Basin
KC-02	Island Bay extension: Berhampore Town Centre
KC-03	Island Bay extension: Berhampore Town Centre to Riddiford St
KC-04	Brooklyn: Brooklyn Town Centre
KC-05	Brooklyn: Brooklyn Hill - Ohiro Rd to Karo Dr (to City Centre)
KC-06	Kelburn: Upland Rd to The Terrace (to City Centre)
KC-07	Karori: Chaytor St - Karori Rd to Karori Tunnel
KC-08	Kilbirnie: Constable St - Crawford Rd to Riddiford St
KC-09	Karori: Glenmore St - The Rigi to Bowen St (to City Centre)
KC-10	Miramar: Hataitai Tunnel to Kent Tce (to City Centre)
KC-11	Johnsonville: Hutt Rd - Ngauranga Gorge to Kaiwharawhara Rd
KC-12	Island Bay extension: Reef St to Island Bay Town Centre
KC-13	Island Bay extension: Island Bay Town Centre
KC-14	Mt Cook: John St - Adelaide Rd to Wallace St
KC-15	Johnsonville: Johnsonville Triangle
KC-16	Johnsonville: Hutt Rd - Kaiwharawhara Rd to Thorndon Quay
KC-17	Karori extension: S Karori Rd to Karori Town Centre
KC-18	Karori extension: Karori Town Centre
KC-19	Karori: Karori Town Centre to Chaytor St
KC-20	Karori: Glenmore St - Karori Tunnel to The Rigi
KC-21	Kelburn: Upland Rd - Glenmore St to Glasgow Rd
KC-22	Kilbirnie: Kilbirnie Town Centre
KC-23	Miramar: Kilbirnie Town Centre to Wellington Rd
KC-24	Kilbirnie: Crawford Rd - Kilbirnie Town Centre to Constable St
KC-25	Kingston extension: Kingston to Mornington
KC-26	Lyall Bay extension: Lyall Pde to Kilbirnie Town Centre

ID	Segment
KC-27	Miramar extension: Miramar North
KC-28	Miramar: Miramar Town Centre
KC-29	Miramar: Miramar Town Centre to Rongotai Rd
KC-30	Kingston extension: Mornington to Brooklyn Town Centre
KC-31	Newlands extension: Newlands Rd
KC-32	Newtown: Newtown Town Centre
KC-33	Kaiwharawhara extension: Ngaio Gorge
KC-34	Johnsonville: Ngauranga Gorge
KC-35	Johnsonville: Ngauranga Gorge South
KC-36	Miramar: Troy St to Kilbirnie Town Centre
KC-37	Miramar: Seatoun to Seatoun Tunnel
KC-38	Miramar: Seatoun Tunnel to Miramar Town Centre
KC-39	Island Bay extension: Island Bay Town Centre to Berhampore Town Centre
KC-40	Newtown: The Basin (to City Centre)
KC-41	Johnsonville: Thorndon Quay - Hutt Rd to Moore St (to City Centre)
KC-42	Mt Cook: Wallace St - John St to Webb St (to City Centre)
KC-43	Miramar: Wellington Rd to Hataitai Tunnel

Appendix D: Prioritisation methodology

This technical note outlines the process used to identify potential investment scenarios to deliver a package of works that deliver the optimal outcomes against the City Streets investment objectives. The note covers the following topics:

- 1. Overall process for developing scenarios.
- 2. Description of data sources
- 3. Defining the corridor segments
- 4. Identifying problems and opportunities to assess the prioritisation criteria on each segment.
- 5. Identifying indicative toolkit solutions for each segment
- 6. Developing investment scenarios to form potential packages of work.

1. **Overall process for developing scenarios**

This note details the approach for developing possible scenarios for the suggested City Streets package of works. The scenario identification process is as follows:

- 1. Step 1: Assess all corridor segments within the City Streets geographical scope to identify problems and opportunities within the corridors and assess the six prioritisation criteria.
- 2. Step 2: Define the City Streets toolkit (i.e., interventions that could be applied to address the identified problems for public transport, cycling, walking, and safety)
- 3. Step 3: Identify indicative solutions for each corridor segment by matching indicative toolkit interventions to the identified problems.
- 4. Step 4: Calculate the estimated cost for the indicative solutions on each corridor segment.
- 5. Step 5: Develop a range of investment scenarios by adjusting the weightings of the prioritisation criteria.

2. Description of data sources

The analysis is based on the following sources of data, which have been used to identify current problems and opportunities across the City Streets geographical scope:

Historical Data:

- Traffic volumes from asset management (RAMM) data (obtained July 2020)
- Surveyed traffic, cyclist, and pedestrian volumes at selected points along corridors (note: traffic counts take place periodically, so survey dates are not the same for all sites)
- Snapper data on boardings and alightings, which is used to estimate passenger loadings on buses, and to create origin-destination matrices showing the number of people travelling between stops, broken down by time period (May 2019)
- Real Time Information on bus journey times between stops, which is used to identify delays along the route and infer causes of delays (data from May 2019)
- Cyclist and pedestrian volumes from the Active Mode Model (November 2017)
- Signal timing data from SCATS
- Place scores from the Wellington Place and Movement Framework (December 2019)
- 10-year injury road crash data from Waka Kotahi's Crash Analysis System (2010– 2019)
- Information on the location and characteristics of features within the corridor segments, including bus stop data (ex. taper lengths), bus infrastructure (ex. location and time restriction of priority lanes), cycle infrastructure (ex. location of cycle lanes), pedestrian infrastructure (ex. location of formalised crossings), and traffic lanes (ex. lane widths)

Future Forecasts:

 Road safety risk ratings from the Safer Journeys Risk Assessment Tool (MegaMaps) (obtained July 2020) Population growth estimates for WCC's Draft Spatial Plan (provided September 2020)

The analysis for the IBC did not include a primary data collection exercise for any missing data or for secondary streets with limited data. These streets will be examined further if the neighbouring core corridors examined in the IBC are taken forward for further consideration.

Let's GET Contraction MOVING

3. Defining the corridor segments

The geographical scope of the City Streets IBC is defined as follows:

- In the central city area, all Collector, Principal, and Arterial roads, motorways, and key local roads and routes identified as important links for the walking and cycling networks.
- Outside of the central city area, all high frequency bus corridors identified through the Wellington Bus Priority Programme (BPP), identified as key suburban corridors, noting that some of these overlap with wider routes under consideration for the Mass Rapid Transit project
- Outside of the central city area, the addition of key public transport corridors beyond the BPP scope to ensure adequate coverage of the City Streets scope; these corridors are also identified as key suburban corridors.

Since the geographical scopes of the other LGWM projects are not yet confirmed, this analysis has been broadened to include these streets for the problem identification step.

The streets within the scope were identified in ArcGIS based on asset management (RAMM) data. Key suburban corridors and city centre streets were divided into 43 and 120 corridor segments, respectively, to allow data to be matched and aggregated up in a flexible manner. Background data was spatially matched to the corridor segments.

The map in Figure 32 shows the location of the corridor segments analysed for City Streets.

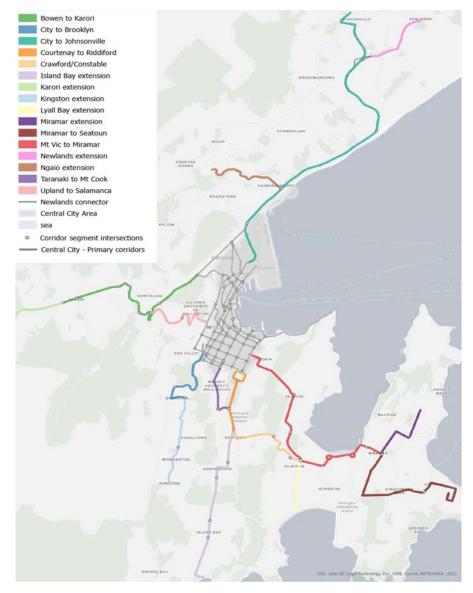


Figure 32: City Streets geographic scope

4. Step 1: Identifying problems and opportunities

To evaluate the current problems and opportunities within the City Streets geographic scope, assessment categories were identified. The categories were selected to align with the City Streets investment objectives and the GPS strategic priorities. These categories were evaluated across each of the 163 corridor segments in the City Streets scope.

The six assessment categories serve two purposes:

- 1. Identifying the existing type and scale of problems and opportunities on the corridor segments
- 2. Providing a set of prioritisation criteria that can be scored and used to identify the priority locations for City Streets investment

4.1. Selecting the prioritisation criteria

The following six assessment categories were selected:

- Public transport level of service
- Cycling level of service
- Walking level of service
- Amenity and place
- Safety
- Access to support growth

Scores were assigned for all six of the assessment categories on each of the corridor segments. These scores provide a set of prioritisation criteria that aim to assess the scale of a particular problem (or opportunity) and the extent to which an investment solution could effectively improve the transport system in a manner that aligns with the City Streets investment objectives. The criteria can be compared and weighted to determine the relative level of priority for each of the corridor segments. Table 28 shows the alignment between the City Streets investment objectives, the GPS strategic priorities, and the criteria.

	GPS Strategic Priority				
City Streets investment objectives	Safety	Better Travel Choices	Better Freight Connections	Climate Change	Relevant prioritisation criteria
Create a safer, more accessible, connected, and liveable central city with attractive streets and places for people to enjoy	1	1		~	WalkingAmenity and placeSafety
Reduce reliance on private vehicle trips by making strategic PT corridors safe, more efficient, and reliable, with easy connection points	~	~		1	Public transportSafety
Reduce reliance on private vehicle trips by creating connected, safe, and efficient access by bike	~	~		1	• Cycling • Safety
Create a low carbon future transport system which is more resilient, supports growth and is adaptable to disruption by providing safe and attractive transport choices	~	~	√	√	 Public transport Cycling Walking Amenity and place Safety Growth

This section outlines how the scores have been assessed. Section 8 of this appendix outlines how weightings are applied to the prioritisation criteria scores to identify priority areas.

Table 28: Alignment of City Streets investment objectives, GPS, and prioritisation criteria

4.2. Scoring the prioritisation criteria

All six prioritisation criteria were assigned a score between 0 to 100, with 0 representing the lowest priority (no to minimal problems / opportunities on the segment) and 100 representing the highest priority (the most problems / opportunities relative to other locations in the City Streets scope). This ensured that the scores for all six of the criteria used the same scale, where the location with the highest priority under that criterion had a score of 100.

The scores for the six prioritisation criteria were calculated using the following process:

- 4. Input data was collated and matched to each corridor segment. Table 29 summarises the input data that was considered under each of the prioritisation criteria.
- 5. Input data was analysed to calculate scores for the six prioritisation criteria. For some criteria, sub-criteria scores needed to be calculated first. The sub-criteria scores were then combined to calculate the final prioritisation score; this process varied for each of the six prioritisation criteria.
- 6. Where required, the prioritisation criteria scores were normalised to a scale of 0 to 100, so that the highest score was scaled to 100.

A summary of this process for calculating the prioritisation criteria scores is outlined in Figure 33. The rest of this section provides further details on how each score was calculated. The process of applying weightings to the prioritisation criteria scores to develop scenarios (the final stage represented in Figure 33) is described in Section 8 of this appendix.

Table 29: Summary of factors considered for each of the prioritisation criteria

Prioritisation	Factors considered		
criteria	On key suburban corridors	In the city centre	
Public transport level of service	Bus travel time delayBus travel time variabilityBus patronage		
Cycling level of service	 Cycling level of service Gradient Cyclist volumes 	 Cycling level of service Cycle permeability (one-way streets) Cyclist volumes 	
Walking level of service	 Walking level of service for pedestrians accessing bus stops Bus boarding and alighting volumes 	 Pedestrian delay Pedestrian severance Pedestrian permeability (lack of pedestrian connections between streets) Current and aspirational place values Pedestrian volumes 	
Amenity and place	 Aspirational place values for town centres 	 Current and aspirational place values 	
Safety	 Collective and Personal Risk ratings Social cost of injuries Number of vulnerable user crashes 		
Access to support growth	Estimated population growth served by the corridor		

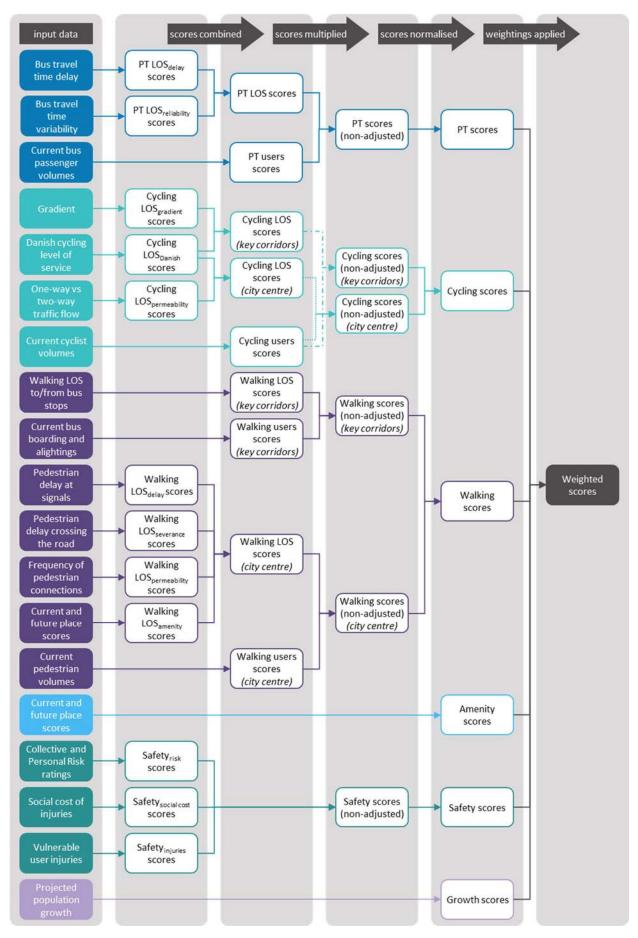


Figure 33: Process for calculating the prioritisation criteria scores

4.2.1. Public transport

The public transport score is based on the bus level of service gap and is weighted by the number of bus patrons affected, as follows:

PT score = PT LOS score × PT users score

The resulting scores were then normalised to a scale of 0 to 100, so that the highest score was scaled to 100.

4.2.1.1. Level of service score

The level of service score for public transport is representative of the gap between the current level of service and the aspirational level of service: the higher the score, the larger the gap between the current situation and the aspiration.

The level of service is assessed based on two factors: bus travel time delay (delay) and bus travel time variability (reliability). The combined level of service score for public transport was calculated as the average of these two scores:

$$PT \ LOS \ score = \frac{1}{2} \left(PT \ LOS_{delay} \ score \ + PT \ LOS_{reliability} \ score \right)$$

4.2.1.2. Delay

Bus delay was assessed by comparing the average bus travel time against the unimpeded running time rate for buses on the corridor segment. The average bus travel time is representative of the current level of service, and the unimpeded running time rate is representative of the aspirational level of service.

The bus travel time values were rescaled to obtain scores of 0 to 100, using the following rescaling values:

 $1 \times ideal running rate (min/km) = PT LOS_{dela}$ score of 0

 \geq 3 × ideal running rate (min/km) = PT LOS_{delay} score of 100

The methods used to calculate the bus travel time and the unimpeded running time are detailed in the Wellington Bus Priority Programme (BPP).

4.2.1.3. Reliability

Bus reliability was assessed using the bus travel time variability, which is representative of the current level of service. The aspirational level of service on all segments is that

there is no variability in bus travel times. The bus travel time variability was calculated using methods described in the BPP.

The travel time variability values were rescaled to obtain scores of 0 to 100, using the following rescaling values:

 $0 min/km = PT LOS_{reliability}$ score of 0

$$\geq 1.5 min/km = PT LOS_{reliability}$$
 score of 100

4.2.1.4. Users score

The users score for public transport is based on the current daily bus passenger volumes on the corridor. The bus passenger volumes were normalised to obtain scores of 0 to 100, where:

highest volume of bus passengers = PT users score of 100

4.2.2. Cycling

The cycling score is based on the cycling level of service gap and is weighted by the number of cyclists affected, as follows:

Cycling score = Cycling LOS score × Cycling users score

The resulting scores were then normalised to a scale of 0 to 100, so that the highest score was scaled to 100.

4.2.2.1. Level of service score

The level of service score for cycling is representative of the gap between the current level of service and the aspirational level of service: the higher the score, the larger the gap between the current situation and the aspiration.

The cycling level of service score is calculated using different methods for segments in the key suburban corridors and segments in the city centre.

On the key suburban corridors, the level of service gap is based primarily on the Danish cycling level of service with an adjustment factor for the gradient of the road:

 $Cycling \ LOS \ score = Cycling \ LOS_{Danish} \ score - Cycling \ LOS_{gradient} \ score$

In the city centre, the level of service gap is primarily based on the Danish cycling level of service with an adjustment factor for whether the traffic flow is one or two-way (an indication of permeability for cyclists through the city centre):

Cycling LOS score = Cycling LOS_{Danis} score - Cycling LOS_{permeability} score

On both the key suburban corridor and city centre segments, the minimum *Cycling LOS score* a segment could be assigned was 0. Where the above equations resulted in a negative score, a score of 0 was assigned.

Danish cycling level of service

The Danish methodology for calculating the cycling level of service returns level of service ratings from A to F, with A representing a good level of service and F representing a poor level of service. This method is calculated based on the following factors:

- Motor vehicle volumes and speeds
- Number of traffic lanes and lane width
- Bike path/lane width and buffer width(s)
- Footpath location and pedestrian volumes
- Presence of on-street parking and buses on the street
- Type of adjacent land use

The aspirational level of service rating is A. The cycling level of service ratings were converted to scores ranging between 0 and 100 as outlined in Table 30.

Table 30: Danish cycling level of service scores

Danish cycling LOS rating	Cycling LOS _{Danish} score
Α	0
В	20
С	40
D	60
E	80
F	100

Gradient

The Danish method for calculating the cycling level of service does not factor in the gradient of the road. Given that some of the key suburban corridors have significant grades that impact on the level of service for cyclists, an adjustment factor has been included for the average gradient on the corridor segment. The average gradient values were rescaled to obtain scores of 0 to 10, using the following rescaling values:

 $\leq 3\% = Cycling \ LOS_{gradient} \ score \ of \ 0$

$$\geq$$
 7% = Cycling LOS_{gradient} score of 10

The road gradient is an unalterable characteristic of the road and, therefore, it affects the aspirational cycling level of service. The achievable level of service on a road with a steep gradient will be lower than that on a flat road. To account for this, the gradient adjustment factor was subtracted from the *Cycling LOS*_{Danish} score to indicate a smaller gap between the current and aspirational levels of service on steep roads.

This adjustment factor was used for the segments on the key suburban corridors only, as the corridor segments in the city centre are relatively flat.

Permeability

The Danish method for calculating the cycling level of service is based on the road cross section and does not consider the wider network connections for cyclists. Permeability and direct routes are important elements for providing a high level of service for cyclists

within the city centre. Permeability scores were assigned based on the type of flow on the corridor segment as follows:

one-way street = $Cycling \ LOS_{permeability} \ of \ 0$

 $two-way street = Cycling LOS_{permeability} score of 10$

The permeability adjustment factor is subtracted from the *Cycling LOS_{Danish} score* to indicate that one-way streets have a larger gap in the cycling level of service than two-way streets.

This adjustment factor was used for the segments in the city centre only. This is because the focus for the key suburban corridors is to improve access specifically to and from the city centre, which does not require a permeable network.

4.2.2.2. Users score

The users score for cycling is based on the current daily volume of cyclists travelling along the corridor. The cyclist volumes were normalised to obtain scores of 0 to 100, where:

no cyclists = Cycling users score of 0

highest volume of cyclists = Cycling users score of 100

4.2.3. Walking

The walking score is based on the walking level of service gap and is weighted by the number of pedestrians affected, as follows:

Walking score = Walking LOS score × Walking users score

The resulting scores were then normalised to a scale of 0 to 100, so that the highest score was scaled to 100.

4.2.3.1. Level of service score

The level of service score for walking is representative of the gap between the current level of service and the aspirational level of service: the higher the score, the larger the gap between the current situation and the aspiration. The level of service for walking is calculated using different methods for segments in the key suburban corridors and segments in the city centre.

On the key suburban corridors, the level of service is based on the walking level of service for pedestrians walking to and from bus stops.

In the city centre, the level of service is based on four factors: pedestrian delay when travelling along the corridor (delay), pedestrian delay when crossing the corridor (severance), the frequency of pedestrian routes that connect to adjacent streets (permeability), and the deficiency in the place value (amenity). The combined level of service score for walking was calculated as the average of these four scores:

Walking LOS score =

 $\frac{1}{4} \begin{pmatrix} Walking \ LOS_{delay} \ score \ + \ Walking \ LOS_{severance} \ score \ + \\ Walking \ LOS_{permeability} \ score \ + \ Walking \ LOS_{amenity} \ score \end{pmatrix}$

Bus stop access

On the key suburban corridors, the level of service is based on a qualitative analysis of the walking level of service for pedestrians walking to and from bus stops. The qualitative LOS ratings were converted to scores of 0 to 100 as outlined in Table 31.

Table 31: Walking level of service scores on the key suburban corridors

Qualitative walking LOS assessment	Walking LOS score
No gaps in walking LOS for bus users	0
Some minor deficiency in walking LOS for bus users	20
Minor to medium deficiency in walking LOS for bus users	40
Medium deficiency in walking LOS for bus users	60
Medium to major deficiency in walking LOS for bus users	80
Major deficiency in walking LOS for bus users	100

Delay

In the city centre, walking delay was assessed as the average delay experienced by pedestrians when walking along the corridor segment. The delay is calculated as the average delay experienced at signalised intersections, expressed in sec/km.

The pedestrian delay at individual signalised intersections was calculated using Pretty's Method⁴⁹:

$$d = \frac{(C-w)^2}{2C}$$

where:

C = cycle length, s

w = walk time (pedestrian green time), s

The pedestrian delay time corresponds to level of service ratings, from A to F, based on the level of service ratings for pedestrians crossing in Waka Kotahi's *Pedestrian Planning and Design Guide, 2009*, provided in Table 32.

Table 32: Levels of service for pedestrians crossing

Average pedestrian delay (sec)	LOS
<5	А
5 – 10	В
10 – 15	С
15 – 20	D
20 – 40	E
>40	F

The pedestrian delay values for individual intersections were converted to delay represented as min/km. To calculate this, an assumption of eight signalised intersections per kilometre in the city centre was used (typical spacing of 125m between signalised intersections in the central city). Assuming this spacing, the delay per intersection for each level of service rating, A to F, was converted to delay in sec/km, with corresponding scores of 0 to 100, as per Table 33.

Table 33: Walking delay scores

Pedestrian delay (sec/km)	Walking LOS _{delay} score
0 - 40	0
40 – 80	20
80 – 120	40
120 – 160	60
160 – 320	80
≥320	100

Severance

In the city centre, walking severance was assessed as the delay experienced by pedestrians crossing the corridor segment.

On segments where controlled pedestrian crossings⁵⁰ were located less than 100m apart (i.e., a pedestrian would never need to walk further than 50m to the nearest controlled crossing), the crossing delay was taken as the pedestrian delay at the controlled crossings. For signals, this delay was assessed using the method described under the Delay section, above.

On segments where controlled pedestrian crossings were located more than 100m apart, the delay was calculated as the mid-block pedestrian crossing delay using the method outlined in Waka Kotahi's *Guidelines for the Selection of Pedestrian Facilities*.

The pedestrian delay time corresponds to level of service ratings, from A to F, based on the level of service ratings for pedestrians crossing in Waka Kotahi's *Pedestrian Planning and Design Guide, 2009.* The delays were converted to scores ranging between 0 and 100, corresponding to the level of service ratings, as outlined in Table 34.

⁵⁰ Controlled crossings include zebra crossings, mid-block signalised crossings, and signalised intersections.

⁴⁹ The University of North Carolina Highway Safety Research Center, "Recommended Procedures, Chapter 13 "Pedestrians," of the Highway Capacity Manual," United States Department of Transportation Federal Highway Administration, McLean, VA, Tech Rep. FHWA-RD-98-107, 1988

Table 34: Levels of service for pedestrians crossing and walking severance scores

Average pedestrian delay (sec)	LOS	Walking LOSseverance score
<5	А	0
5 – 10	В	20
10 – 15	С	40
15 – 20	D	60
20 – 40	E	80
>40	F	100

Permeability

In the city centre, walking permeability was assessed as the frequency of pedestrian connections to parallel routes. This was calculated as the average spacing between side pedestrian connections, which included all streets and pedestrian accessways.

The values for the average spacing were rescaled to obtain scores of 0 to 100, using the following rescaling values:

 $\leq 100m = Walking LOS_{permeability}$ score of 0

 $\geq 250m = Walking LOS_{permeability}$ score of 100

Amenity

In the city centre, the amenity score was assessed using the method described under Section 4.2.4 below.

4.2.3.2. Users score

Boarding and alighting volumes

On the key suburban corridors, the users score for walking is based on the current daily volume of bus boardings and alightings on the corridor segment per kilometre. The boarding and alighting volumes were normalised to obtain scores of 0 to 100, where:

no bus boardings and alightings = Walking users score of 0

highest volume of boardings and alightings = Walking users score of 100

Although the bus boarding and alighting volumes are used only for walking scores on the key corridors, the volumes were scaled using the volumes of boardings and alightings across the entire City Streets network. This was to weight the number of bus passengers affected by the walking deficiency on the key suburban corridors relative to the city centre.

Pedestrian volumes

In the city centre, the users score for walking is based on the current daily volume of pedestrians travelling along the corridor. The pedestrian volumes were normalised to obtain scores of 0 to 100, where:

no pedestrians = Walking users score of 0

highest volume of pedestrians = Walking users score of 100

4.2.4. Amenity

The amenity score is based on the deficiency in the place value of a location, assessed as the difference between the current and aspirational place values. The current and future place values were taken as the values assessed in the *Wellington Place and Move Framework* (2019). Amenity scores from 0 to 100 were assigned as per Table 35.

Table 35: Amenity scores

		Current place value		
		1	2	3
value	1	0	0	0
Future place value	2	50	0	0
Future	3	100	50	0

The geographic scope of the locations assessed in the *Wellington Place and Move Framework* is limited to the city centre and a minimal number of locations on the key suburban corridors (limited to a select few corridors in Mount Cook and Newtown). For

segments on the key suburban corridors where place values were not available, indicative amenity score were assigned as follows:

 $segment \ passes \ through \ a \ town \ centre = Amenity \ score \ of \ 100$

all other segments = Amenity score of 0

4.2.5. Safety

The safety score is an assessment of safety on the corridor segment based on three factors: Collective Risk and Personal Risk ratings (risk), the social cost of injury crashes (social cost), and the number of vulnerable user injuries (injuries). The combined score for safety was calculated as the average of these three scores:

Safety score =

$\frac{1}{3}$ (Safety_{risk} score + Safety_{social cost} score + Safety_{injuries} score)

The resulting scores were then normalised to a scale of 0 to 100, so that the highest score was scaled to 100.

4.2.5.1. Risk ratings

The safety risk rating scores were assessed based on the Collective Risk and Personal Risk ratings for each corridor segment. Collective Risk is a measure of the total number of deaths and serious injuries per kilometre that can be expected on a road segment over a five-year period, while Personal Risk is a measure of the risk of an individual dying or being seriously injured on a road corridor.

The Collective and Personal Risk ratings were taken as the ratings from the Safer Journeys Risk Assessment Tool (MegaMaps). Where a City Streets corridor segment crossed two or more Collective and/or Personal Risk ratings in the MegaMaps tool, the weighted average rating was taken. To calculate the weighted average rating, the rating categories of Low to High were converted to values of 1 to 5 and weighted based on the length of the segment at each rating.

⁵¹ As per the Ministry of Transport's *Social cost of road crashes and injuries 2018* update, the social cost estimates used for minor and serious injuries have been scaled up to account for non-reported cases.

The Collective and Personal Risk ratings were then converted to scores from 0 to 100 as per Table 36.

Table 36: Safetyrisk scores

			Coll	ective risk ra	iting	
		Low	Low Medium	Medium	Medium High	High
bu	Low	0	10	25	40	55
k rating	Low Medium	10	25	40	55	70
al risk	Medium	25	40	55	70	85
Persona	Medium High	40	55	70	85	100
Pe	High	55	70	85	100	100

4.2.5.2. Social cost

The social cost scores were assessed based on the social cost of injury crashes in a corridor segment on a per kilometre basis. This was calculated as the estimated total social cost of all injury crashes that occurred in the corridor segment over the past 10-year period (2010-2019). The estimated social cost applied to each injury type were sourced from the Ministry of Transport's *Social cost of road crashes and injuries 2018 update* (2019), as per Table 37.

Table 37: Social cost per injury

Injury type	Social cost estimate ⁵¹
Minor	\$107,000
Serious	\$926,000
Fatal	\$4,369,700

Where an injury crash occurred at the intersection of two or more City Streets corridor segments, the social cost of that crash was equally divided between all segments.

The total social cost was divided to determine the social cost per kilometre. The social cost values were then normalised to obtain scores of 0 to 100, where:

 $no\ social\ cost = Safety_{social\ cost}\ score\ of\ 0$

largest social cost value = Safety_{social cost} score of 100

4.2.5.3. Vulnerable user injuries

The vulnerable users scores were assessed based on the number of vulnerable user injuries in a corridor segment on a per kilometre basis. This was calculated as the total number of vulnerable user injuries that occurred in the corridor segment over the past 10-year period (2010-2019). Vulnerable users include pedestrians, cyclists, motorcyclist, and moped drivers.

Where an injury crash occurred at the intersection of two or more City Streets corridor segments, the injury was equally divided between all segments (for example, where one injury occurred at the intersection of two segments, half an injury was attributed to each segment).

The total number of vulnerable user injuries was divided to determine the injuries per kilometre. The vulnerable user injury values were then normalised to obtain scores of 0 to 100, where:

no vulnerable user injuries = $Safety_{injuries}$ score of 0

largest vulnerable user injury value = $Safety_{injuries}$ score of 100

4.2.6. Growth

The growth score is based on the degree to which a corridor segment is aligned with expected future urban growth. The scores were calculated based on the total projected increase in population that would be served by the corridor segment to access the city centre.

For the key suburban corridors and bus routes within the city centre, this was based on the projected population growth in suburbs served by the bus route, aggregating as the route moves towards the city centre. As an example, the projected population growth served by corridor segments in Island Bay accounts for population growth in Island Bay only, whereas the projected population growth for corridor segments in Berhampore accounts for population growth in both Berhampore and Island Bay.

For all other streets in city centre—those without bus routes—the population growth served by the corridor was taken as the projected population growth of the suburbs in which the corridor segment is located.

The values for the total projected population growth served by the corridor segments were normalised to obtain scores of 0 to 100, where:

no population growth = Growth score of 0

highest population growth = Growth score of 100

5. Step 2: Building the intervention toolkit

An appropriate mix of interventions can provide improvements for public transport and active modes, as well as placemaking and general safety for road users. This section outlines possible interventions that could be implemented to deliver against the outcomes of the City Streets programme. They are grouped into five categories of interventions:

- Bus priority interventions
- Cycle interventions
- Pedestrian interventions
- General safety improvements
- Amenity and place improvements

In addition, mitigation measures have been considered. These measures may be applicable where there is judged to be an unacceptably significant impact on vehicles, and it may be required to implement interventions that mitigate against that impact.

The interventions are expected to be applied inside the road corridor (defined as the building-to-building width) or on cycle and / or pedestrian accessways. In some cases, delivering interventions may entail minor road widening or creating new accessways.

Although the City Streets project is designed as a multi-modal package of improvements, the intervention toolbox is defined in a mode-specific way. Multiple interventions will be overlaid on corridors to achieve multi-modal outcomes.

5.1. Bus priority interventions

The intervention toolbox for bus priority improvements has been identified based on the intervention toolkit in the Wellington Bus Priority Programme. Table 38 outlines the potential bus priority interventions that may be implemented under the City Streets programme. These measures can be grouped into four broad locations:

- Bus stops
- Midblock
- Intersections
- Signals

Operational improvements to the bus network were not considered in the City Streets toolkit, including increasing bus frequency, improving ticketing efficiency, or changing the type of buses used. These interventions are out of scope for the project.

Table 38: Bus priority improvements

Location	Intervention	How it works	Where it's useful
Bus stops	Bus stop rationalisation	Reducing the number of bus stops reduces acceleration / deceleration / dwell time losses, reducing bus travel times.	 Where bus stops are close together, resulting in overlapping walking catchments; this causes the bus to stop frequently without substantially increasing access to bus stops
	Entry / exit tapers	At off-line bus stops, the road layout can prevent the bus from kerbing properly, requiring passengers to step into the road to board or alight. Entry / exit tapers assist buses in manoeuvring into and out of bus stops, allowing the bus to kerb easily.	 At bus stops where the road layout prevents buses from manoeuvring into bus stops
	Lengthening bus stop	An increased number of stopping bays allows multiple buses to use the bus stop at the same time, reducing bus-bus congestion at bus stops.	 At bus stops where high frequency of buses and / or long dwell times (at bus interchanges) cause bus-bus congestion
	In-line bus stops	Kerb extensions align the bus stop with the traffic lane, creating an in- line bus stop. This enables buses to stop at the kerb line without needing to make large lateral shifts.	 Where merging into traffic from off-line bus stops creates reentry delays Where passenger volumes require a larger dedicated waiting area than is available on the footpath Where there are conflicts at bus stops with people on bikes
Midblock	Peak-hour transit lanes	Dedicated traffic lanes for buses reduce conflicts with general traffic at peak times only.	 When high v/c ratios are causing mid-block congestion at peak times and there is a high need / demand for parking outside peak times

Location	Intervention	How it works	Where it's useful
	24-hour transit lanes	Dedicated traffic lanes for buses reduce conflicts with general traffic at all times.	 When high v/c ratios are causing mid-block congestion across the day and there is a not a high need / demand for parking or corridor widening is feasible
Peak-hour clearways		Parking is restricted at peak times to allow for wider lanes and shoulders and facilitate manoeuvring in and out of bus stops.	• When narrow traffic lanes (>3.2m) and / or high amounts of side friction from parked vehicles cause delays for buses and there is a high need / demand for parking outside peak times
	Widened traffic lane	Traffic lanes are widened, either through removing parking or through corridor widening.	 Where narrow traffic lanes (>3.2m) cause delays for buses Where high amounts of side friction from parked vehicles cause delays for buses
Intersections	Minor intersection redesign	Improvements will vary from site to site. They may include a redesign of signal phases, a reduction in allowed turning movements, and / or traffic lane reconfiguration.	 At signalised intersections where buses are experiencing moderate delays and / or there are safety issues
	Major intersection redesign	Improvements will vary from site to site. They are likely to include major reconfiguration of traffic lanes and turning movements.	 At signalised intersections where buses are experiencing significant delays and / or there are safety issues
Signals	Increased green phase	By giving the bus direction of travel an increased share of the cycle time, the average delay at an intersection is reduced and the share of buses being delayed is reduced.	• At signalised intersections where there are significant delays in the bus direction of travel
	Queue jump	Approaching buses exit the general traffic lane and enter the queue jump lane, allowing buses to bypass queued vehicles.	 At traffic signals where there are long queues of vehicles, causing long queue service times.
			 At traffic signals where buses must change lanes or turn at the intersection and would benefit from traffic being held
	Bus phase	Approaching buses in a bus / queue jump lane receive a 'B' signal phase before general traffic gets a green.	 At traffic signals where transit vehicles must manoeuvre between lanes or make movements that general traffic does not (ex. into a bus depot)
			 When a bus stop immediately precedes a traffic signal and buses can get a head start through the intersection

5.2. Cycle interventions

The intervention toolbox for cycle improvements focuses on interventions that can be delivered within road corridors and/or cycle accessways and which are intended to primarily benefit people cycling. The cycle toolbox is largely based on Waka Kotahi's *Cycling network guidance*⁵². Table 39 outlines a suite of interventions that can be used to improve cycling safety and user experience. These measures can be grouped into five broad locations:

- Midblock
- Intersections
- Midblock crossings
- Signals
- Accessways

Some cycle interventions are appropriate in some contexts but not others. Separation from motor traffic is more important in high-traffic or high-speed environments. As a result, shared roadway solutions, such as neighbourhood greenways or shared zones, may deliver an acceptable level of service on low-traffic, low-speed streets, but separated cycleways may be necessary to deliver an acceptable level of service on high-traffic, high-speed streets.

Other cycle improvements considered out of scope for City Streets relate to education and bike share schemes.

Table 39: Cycle improvements

Location	Intervention	How it works	Where it's useful
Midblock	Shared zone	In shared zones there is no segregation between road users (pedestrians, cyclists, and motor vehicles). Typical street elements are removed, including footpaths, line markings, and kerbs. This results in an intentional level of ambiguity so that drivers proceed with caution and at slow speeds.	 On streets where low vehicle volumes and low speeds (20km/h) can be achieved On intensely developed shopping streets or in town centres
	Shared path	A shared path is separated from motor vehicles and is shared by pedestrians, cyclists, and other wheeled recreational users.	 On roads with high vehicle volumes and speeds with low pedestrian and / or cycling volumes

⁵² Waka Kotahi, Cycle Network Guidance: https://www.nzta.govt.nz/walking-cycling-and-public-transport/cycling/cycling-standards-and-guidance/cycling-network-guidance/

Location	Intervention	How it works	Where it's useful
	Neighbourhood greenway	 Streets with low volumes of motor traffic travelling at low speeds create a pleasant cycling environment without requiring specific cycle facilities. They incorporate low speed limits and physical measures to ensure low speed environments. Some measures that can be used to achieve a neighbourhood greenway environment include: sharrows signage traffic calming measures reducing vehicle access by restricting turning or through movements for motor vehicles while maintaining access for pedestrians and cyclists 	 On local roads where low vehicle volumes (ideally no higher than 1,500–3,000 vehicles/day maximum, and 150-200 vehicles in the peak hour) and low speeds (30km/h or slower) can be achieved
	Cycle lanes	Cycle lanes are painted lines within the carriageway that provide dedicated but unprotected space for cyclists.	 On roads with modest vehicle volumes and speeds, ideally located kerbside (i.e., not next to on-street parking)
	Separated cycleway	 Separated cycleways provide an exclusive cycling facility situated on or adjacent to the carriageway and includes some sort of physical separation from vehicles. Separation can be achieved through a number of measures, including: vertical separation, such as a raised kerb horizontal separation, such as a wide buffer space physical barriers, such as bollards 	 On roads with high vehicle volumes and speeds
Intersections	New intersection type	 Choosing an alternative intersection type may improve safety for cyclists travelling through the intersection. Intersection types to consider include: priority-controlled intersections signalised intersections roundabouts 	At intersections where there is evidence of cyclist safety issues
	Upgraded cycle facilities through the intersection	 Improvements at existing intersections can improve safety for cyclists travelling through the intersection. Safety improvements can include: marking cycle facilities continuously through the intersection addressing conflicts between cyclists and left-turning vehicles. realigning roundabouts and adjust visibility to decrease vehicle entry speeds 	 At intersections where there is evidence of cyclist safety issues
	Cycle waiting facilities	 Cycle waiting facilities at signalised intersections provide opportunities for cyclists to wait at signalised intersections and can facilitate safer movements for cyclists through the intersection. Waiting facilities can include: advanced stop boxes advanced stop lines hook-turn boxes 	At traffic signals where there is evidence of cyclist safety issues or severance for turning cyclists

Location	Intervention	How it works	Where it's useful
Midblock crossings	New or upgraded unsignalised crossing	 An unsignalised crossing is a facility where provision is made for cyclists and/or pedestrians to cross the road; priority is not given without the use of traffic signals. The range of facilities available includes: kerb extensions median refuges raised platforms kea crossings pedestrian crossings (zebra) cycle crossings, including dual crossings 	 Where there is evidence of cyclist safety issues or severance and where there are sufficient user volumes to benefit from a formalised crossing
	New or upgraded signalised crossing	A signalised crossing improves cyclist safety by providing priority for crossing cyclists and/or pedestrians through the use of traffic signals in a midblock location. A signalised crossing may reduce cyclist delays times if cyclists are prioritised in the phasing plan.	• Where there is evidence of cyclist safety issues or severance and where there are sufficient user volumes to benefit from a signalised crossing
	New or upgraded grade-separated crossing	A grade-separated crossing improves cyclist safety by providing a spatial separation from motor vehicles. These crossings are generally implemented at busy intersections or across major roads and take the form of an overpass (bridge) or underpass (tunnel). A grade-separated crossing may reduce cyclist delay times if the alternative is a signalised intersection.	 Where there is evidence of cyclist safety issues or severance and where there are sufficient user volumes to benefit from a grade-separated crossing
Signals	Signal phasing	 Specific signals for cyclists can be installed to provide temporal separation of cyclists from turning drivers at signalised intersections. Cycle signals may include: protected movements for cyclists head starts for cyclists all-red extensions for cyclists 	 At signals with cyclist delay (applicable only where separated cycle facilities are provided)
	Increased green phase	By giving the cyclists direction of travel an increased share of the cycle time, the average delay at an intersection is reduced.	• At signalised intersections where there are significant delays in the cycle direction of travel
	Cycle detection	Specific cycle detection can be used at signalised intersections or crossings to improve cyclist safety and priority.	 Where a movement used by cyclists is called on demand only Where an all-red phase extension is required for cyclists to safely finish crossing the intersection Where cyclists are prioritised and can be detected ahead of time (providing time to switch to a green cycle phase for when the cyclist arrives)
Accessways	New cycle accessways	New cyclist links or accessways provide access between destinations and increase permeability for cyclist through-movement.	Where street networks do not currently provide direct cycle links between destinations or along key desire lines

5.3. Pedestrian interventions

The intervention toolbox for pedestrian improvements focuses on interventions that can be delivered within road corridors and/or pedestrian accessways and which are intended to primarily benefit people walking for transport as opposed to people who are 'lingering'. However, some interventions are likely to provide ancillary benefits for 'lingering' users and surrounding land uses. The pedestrian toolbox has been identified based on a review of several sources of guidance on pedestrian facilities^{53,54}. Table 40 summarises these interventions into five broad locations:

- Midblock
- Intersections
- Midblock crossings
- Signals
- Accessways

Table 40: Pedestrian improvements

Location	Intervention	How it works	Where it's useful
Midblock	Widened footpath	Footpaths are widened to accommodate high pedestrian volumes without pedestrian congestion delay or user discomfort.	 Where there are high (peak) pedestrian volumes on footpaths with constrained widths (either due to narrow footpaths or footpath clutter)
	Widened shared path	Shared paths are widened and /or divided into separate paths to accommodate high pedestrian and / or cyclist volumes without congestion delay or user discomfort.	 Where there are high (peak) pedestrian and / or cyclist volumes on shared paths with constrained widths
	Accessibility enhancements	 Accessibility improvements enhance the quality of experience and usability for people with limited mobility. Improvements may include: improved surfaces tactile paving new or improved pedestrian ramps street decluttering 	On footpaths that lack accessibility features
Intersections	Addition of missing pedestrian leg(s) at intersections	Intersections that are missing one or more pedestrian leg(s) increases the number of crossing some pedestrians need to make. This may include missing legs pedestrian signals at signalised intersections or missing crossing aids at unsignalized intersections (for example, kerb ramps). Adding in missing pedestrian legs reduces pedestrian delay and improves accessibility.	 At intersections that are missing one or more pedestrian leg(s)

⁵³ Global Designing Cities Initiative, *Pedestrian Toolbox*: https://globaldesigningcities.org/publication/global-street-design-guide/designing-streets-people/designing-for-pedestrians/pedestrian-toolbox/ ⁵⁴ Waka Kotahi, *Impact on Urban Amenity in Pedestrian Environments*: https://www.nzta.govt.nz/assets/planning-and-investment/docs/impact-on-urban-amenity-in-pedestrian-environments-march-2020.pdf

Location	Intervention	How it works	Where it's useful
	Localised footpath widening	Footpaths are built out at intersections to narrow the roadway, shorten crossing distances, and provide sufficient space for pedestrians to wait to cross without impeding through-movement.	 At intersections and crossings where there are high (peak) pedestrian crossing volumes Where long crossing distances cause safety or accessibility issues
	Upgraded crossings at unsignalised intersection	 Unsignalised intersections can be upgraded to improve pedestrian safety and priority. Upgrades can include: kerb extensions median refuges courtesy crossings (i.e., raised platforms or a change in road surfacing to indicate pedestrian priority) kea crossings zebra crossings new signals 	Where there is evidence of pedestrian safety issues or where there are sufficient user volumes to benefit from an improvement
Midblock crossings	New or upgraded unsignalised crossing	 An unsignalised crossing is a facility where provision is made for pedestrians to cross the road; priority is not given without the use of traffic signals. The range of facilities available includes: kerb extensions median refuges courtesy crossings (i.e., raised platforms or a change in road surfacing to indicate pedestrian priority) kea crossings zebra crossings 	Where there is evidence of pedestrian safety issues or severance and where there are sufficient user volumes to benefit from a formalised crossing
	New or upgraded signalised crossing	A signalised crossing improves pedestrian safety by providing priority for crossing pedestrians through the use of traffic signals in a midblock location. A signalised crossing may reduce pedestrian delays times if pedestrians are prioritised in the phasing plan.	Where there is evidence of pedestrian safety issues or severance and where there are sufficient user volumes to benefit from a signalised crossing
	New or upgraded grade-separated crossing	A grade-separated crossing improves pedestrian safety by providing a spatial separation from motor vehicles. These crossings are generally implemented at busy intersections or across major roads and take the form of an overpass (bridge) or underpass (tunnel). A grade-separated crossing may reduce pedestrian delay times if the alternative is a signalised intersection.	Where there is evidence of pedestrian safety issues or severance and where there are sufficient user volumes to benefit from a grade-separated crossing
Signals	Increased pedestrian green phase (including Barnes Dance crossing)	Increasing the length of the pedestrian phase reduces average delay while crossing the street and indirectly improves safety by reducing demand to cross during the vehicle phase.	 Where average pedestrian delay is larger than a certain threshold Where there are sufficient user volumes to benefit from an improvement

Location	Intervention	How it works	Where it's useful
	Beg button replaced with automatic pedestrian phase	Replacing push buttons reduces average delay while crossing the street and indirectly improves safety by reducing demand to cross during the vehicle phase.	 Where there are sufficient user volumes to benefit from an improvement Where the pedestrian phase does not impact on signal sequencing
	Countdown timers	At traffic signals, countdown timers alert pedestrians crossing to how much time is available to cross the road. Pedestrians can decide for themselves whether to proceed or wait for the next phase.	At midblock crossingsAt Barnes Dance crossings
Accessways	New pedestrian accessways	New pedestrian links or accessways provide access between destinations and increase permeability for pedestrian through-movement. Pedestrian accessways can include laneways or stairs.	 Where street networks do not currently provide direct pedestrian links between destinations or along key desire lines
	Upgraded pedestrian accessways	Improving existing pedestrian laneways or stairs can increase pedestrian safety and user comfort. Improvements may include: • improved surfaces • non-slip surfaces • lighting	 Existing pedestrian accessways that are designed in a way that is unsafe due to trip/slip hazards and / or CPTED concerns

5.4. General safety improvements

There are other interventions that are not particular to any of the modes but provide general safety improvements for multiple road users. Table 41 summarises these interventions into two broad locations:

- Midblock
- Intersections

Other safety improvements considered out of scope for City Streets relate to education and enforcement. For example, advertising campaigns or red-light cameras.

Table 41: General safety improvements

Location	Intervention	How it works	Where it's useful
Midblock	dblockSpeed humps and cushionsSpeed humps and cushions provide vertical deflection and encourages motorists to drive slowly and carefully. Speed humps can have adverse effects on cyclists, so may not be desirable on primary cycle routes.• (On local roads where low speeds are desirable
	Chicanes and pinch point	Where chicanes / pinch-points are implemented, the road narrows to one- way flow or remains two-way and requires vehicles to slightly divert their direction or travel. Vehicles are required to slow down and give way to each other, reducing travel speeds and encouraging courtesy.	 On local roads where low volumes and low speeds are desirable On neighbourhood greenways

Location	Intervention	How it works	Where it's useful
	Speed limit reduction	Formal reduction of the speed limit.	Where there is a high level of people walking and beingIdeally done on a network level or through a town centre
Intersections	Upgraded priority- controlled intersection	Upgrading an intersection that is currently priority-controlled (with a Give Way or Stop sign) to better enable different turning movements and crossing pedestrians. Upgrades can include: • speed reduction • signals • roundabout • 4-way stop	 At crossroads and T-junctions to help manage movements to and from side roads At intersections with operating speeds of 40kmph or higher At intersections where there is a high number of crashes (although signals can create an increase in risk in other types of crashes, so they should be installed sparingly)
	Upgraded signalised intersection	Upgrading of existing signalised intersections will generally be to fully control the right turn phase to eliminate right turn filtering and/or removal of shared straight through and turning lanes. This reduces conflict between different turning vehicles and crossing pedestrians. However, this often means that intersections need to be wider to accommodate different turning movements.	 At intersections with a high turning-crash record. Where opposing multi-lane approaches conflict with right- turning vehicles.
	Side road treatment (for example, hatched no-stopping markings)	Where low volume side roads meet busy arterial roads, other intersection treatments such as signals, roundabouts, or 4-ways stops may not be appropriate. Should be considered in particular where bus lanes or clearways are.	 On arterial roads with relatively high-volume side streets or driveways Where there are a lot of crashes due to turning movements in and out of side streets, to which people riding bikes and motorbikes are particularly vulnerable
	Sightline adjustment	If sightlines are too far or too close, this can create safety issues. Sightlines that are too far can encourage speed, while sightlines that are too close mean that people put themselves into a risky position in order to make the movement they need to. Sightlines can be improved by doing things such as trimming vegetation or removing car parks. Sightlines can be reduced by doing things such as planting trees or other vegetation, or shading traffic lights.	 To be judged on a site-by-site basis

5.5. Amenity improvements

There are other improvements that are not particular to travel but improve the environment for road users. Table 42 outlines some of these amenity improvements that may be considered under the City Streets programme.

Table 42: Amenity improvements

Location	Intervention	How it works	Where it's useful
Pedestrian facility upgrades	Pavement quality upgrade	Footpath surfaces are upgraded (ex. stone pavers vs asphalt) to improve quality of experience for users.	• Where footpaths have basic surfaces (i.e., asphalt) and where there are sufficient user volumes to benefit from an improvement
	Awnings, verandas, or canopies	Awning, verandas, or canopies provide shade and shelter from the weather and improve quality of experience for users.	• Where footpaths in urbanised areas (i.e., not in parks) lack shade or shelter and where there are sufficient user volumes to benefit from an improvement
Amenity upgrades for all users	Lighting and / or CCTV	Lighting and / or CCTV improves perceived safety and reduces the risk of crime or antisocial behaviour.	 Where walking and / or cycling routes lack lighting, CCTV, or passive surveillance from nearby buildings and land uses
	Seating or resting opportunities	Seating improves quality of experience for users and provides resting places for people with limited mobility.	• Where walking and / or cycling routes lack seating, where there is space to provide seating without constraining space for through movement, and where there are sufficient user volumes to benefit from an improvement
	Signage, wayfinding, and place interpretation	Signage and wayfinding increase people's ability to reach their destinations efficiently, especially when they are infrequent users or tourists.	 Where walking and / or cycling routes are not clearly signposted Where signage and place interpretation may improve people's ability to use corridors
	Street trees and / or low plantings	Street trees and plantings improve quality of experience for users and improve safety by providing physical separation from traffic.	• Where walking and / or cycling routes lack plantings and where there is space to provide them without constraining space for through movement or requiring large-scale relocation of underground utilities

5.6. Mitigation interventions

Where there is judged to be an unacceptably significant impact on vehicles, it may be required to implement interventions which mitigate against that impact. These should only be implemented as mitigation interventions, rather than interventions in their own right.

Table 43: Mitigation interventions

Location	Intervention	How it works	Where it's useful
Traffic lanes	All-vehicle clearways	At peak times, remove parking to allow another general traffic lane.	 In areas of high congestion but where HOV or bus lanes are not justified
	HOV lanes	At peak times, remove parking to allow allocate a traffic lane for buses and other high occupancy vehicles. Could also be used by freight. Example: T2 lanes (vehicles must have at least two occupants)	 In areas of high congestion but where bus lanes are not justified
Parking management	Residents or coupon parking schemes	Create space in suburban areas where only residents can park at certain times of the day, or where residents are exempt from paying a coupon fare.	• In suburban areas where parking is in high demand for commuters and visitors, such that residents find it difficult to park their car near their home
	Provision of off-street parking	Construction of an off-street surface parking lot or a parking building.	• To alleviate the loss of supply due to implementation of bus or cycle lanes or other street upgrades
	Adjust parking pricing	Adjust the price of parking to reduce demand for parking in areas where supply is reduced.	• To alleviate the loss of supply due to implementation of bus or cycle lanes or other street upgrades
	Convert parking use	Convert current parking use (ex. turning parking spaces into loading zones, car share spaces or mobility parking spaces) to make better use of remaining parking spaces so that they serve a more useful function.	 In areas of high demand for parking and loading zones.
		Car share spaces in particular may have the added benefit of reducing the demand for car ownership.	
	Cycle parking	Provision of end of journey cycle facilities including replacement of car parks with mass cycle parking	In areas of potential high demand for cycle parking

6. Step 3: Identifying indicative solutions

This section outlines the methodology used to identify indicative toolkit solutions for the City Streets corridors. A three-stage process was undertaken to identify indicative solutions on each of the corridor segments. On every segment, interventions were screened at each location—every bus stop, midblock segment, crossing, and intersection—to determine:

- The corresponding toolkit intervention(s) based on the type and scale of the documented problem(s)
- Any logical adjustments to the assigned intervention(s) to reconcile conflicting interventions and to ensure consistent treatment between adjoining midblock segments where required.
- Whether it would be technically feasible to implement the intervention(s) identified at each location and the enabling works required to do so

In each corridor segment, the interventions that passed both screening criteria were considered the indicative solution for the package of works.

The aim of this exercise is to indicatively match interventions to problem areas and to ensure that interventions are scaled appropriately to address problems. The outcome of this step is a set of location-specific interventions that can be packaged up into scenario packages.

The matched interventions are indicative only and have been selected to assist in indicative cost estimate and cost benefit analysis, rather than a final prioritised programme. Further detailed assessment will be required at a later stage to identify the best-fit intervention solutions.

6.1. Assumptions for integration with other LGWM projects

The City Streets geographic scope overlap with many of the other projects under the LGWM programme. These projects are still under development, running in a parallel process to the City Streets IBC, and they do not yet have identified solutions. To identify interventions for corridor segments under the City Streets programme at this stage, we have made high-level assumptions on which works would be delivered under City Streets, and which fall under other LGWM project scopes. The assumptions used to

identify interventions that would be delivered as part of the City Streets package are outlined in Table 44.

Table 44: Intervention assumptions for integration with the wider LGWM programme

LGWM project	Affected corridor segments	Assumption	
	Courtenay PI – Cambridge Tce to Tory St	For segments on the Golden Mile, we have assumed that	
	Courtenay PI – Tory St to Taranaki St any changes to the c		
	Lambton Quay – Willis St to Stout St	under the Golden Mile scope. However, the Golden Mile	
	Lambton Quay – Stout St to Bowen St	project has identified a need	
Golden Mile	Lambton Quay – Bowen St to Bunny St	for a second public transport	
wille	Manners St – Taranaki St to Cuba St	spine to relieve the capacity constraints of the Golden Mile.	
	Manners St – Cuba St to Victoria St	The second spine is the only	
	Manners St – Victoria St to Willis St	intervention identified for	
	Willis St – Lambton Quay to Mercer St segments on the Golden		
	Willis St – Mercer St to Manners St		
State Highway	Miramar: Wellington Rd to Hataitai Tunnel	The bus route from Wellington Road to the central city (through Hataitai) does not align with the strategic cycle route into the central city (on SH1, Ruahine Street). The strategic cycle route falls within the State Highway geographic scope. We have assumed that it falls under the State Highway scope to provide an improved level of service for cyclists on this route. Cycle improvements have not been allowed for under City Streets on this segment.	

LGWM project	Affected corridor segments	Assumption	
	Bunny St – Waterloo Quay to Featherston St	As described above, the Golden Mile project has	
	Bunny St – Featherston St to Lambton Quay	identified the need for a second public transport spine. The anticipated location of the second spine runs along the	
	Cable St – Jervois Quay to Taranaki St		
	Cable St – Taranaki St to Tory St	potential Mass Rapid Transit	
	Cable St – Tory St to Barnett St	route. The assumption for the	
	Cable St – Barnett St to Chaffers St	second spine under City Streets is that it would be	
	Cable St – Chaffers St to Oriental Pde	implemented as an interim	
	Customhouse Quay – Jervois Quay to Whitmore St	solution in preparation for future mass rapid transit.	
Mass Rapid	Jervois Quay – Taranaki St to Cable St	We have assumed that this route would run between	
Transit	Jervois Quay – Cable St to Harris St	Kent/Cambridge Terrace and	
	Jervois Quay – Harris St to Hunter St	the Wellington Station bus hub	
	Jervois Quay – Hunter St to Post Office Sq	on Lambton Quay, travelling on Wakefield Street/Cable Street, the waterfront quays,	
	Jervois Quay – Post Office Sq to Customhouse Quay	and Bunny Street.	
	Oriental Pde - Wakefield St to Cable St		
	Wakefield St – Cambridge Tce to Tory St		
	Wakefield St – Tory St to Taranaki St		
	Waterloo Quay – Whitmore St to Bunny St		
Thorndon	Johnsonville: Hutt Rd – Ngauranga Gorge to Kaiwharawhara Rd	We have assumed that any work on these segments falls	
Quay & Hutt	Johnsonville: Hutt Rd – Kaiwharawhara Rd to Thorndon Quay	under the Thorndon Quay & Hutt Road project scope. No interventions or costs have	
Road	Thorndon Quay – Mulgrave St to Moore St	been identified for these segments under City Streets.	

6.2. Step 1: Identifying corresponding toolkit interventions

The first step to identifying indicative solutions for each of the corridor segments was applying high-level rules to determine the appropriate indicative toolkit interventions. The rules were applied based on the suitability of an intervention at addressing the type and scale of the documented problems and opportunities identified. Interventions were assessed at the following locations:

- At bus stops
- In the corridor midblock
- At intersections and crossings

The resulting corresponding interventions were considered effective at addressing the problems and were carried through to the next step. The interventions are considered indicative only and have been identified based on limited information and analysis. The indicative solutions have been identified to assist in in preparing indicative cost estimates and a cost-benefit analysis. They are likely to change following further assessment and should not be considered a final prioritised programme.

The following sections outline the rules applied to determine the indicative interventions at each of the locations.

6.2.1. Bus stops

Interventions were considered at bus stop locations to improve bus operations and to address safety concerns for road users operating near the bus stops (particularly bus passengers and passing cyclists). Many of the interventions were matched to bus stops based on the outputs from the Wellington Bus Priority Programme (BPP). On segments that fall outside of the BPP geographic scope, rules were applied consistent with the level of intervention identified in the BPP. The rules used for identifying suitable interventions at bus stops are outlined in Table 45.

Table 45: Interventions at bus stops

Intervention	Where it was considered for the indicative solution
Bus stop rationalisation	• Where bus stops are spaced closer than 300m, excluding stops that serve unique walking catchments (aligned with the BPP methodology)
Bus stop converted to in-line stop	 At bus stops within the BPP scope: Where a stop was identified through the BPP to be converted from off-line to in-line (where the re-entry delay is greater than 0.05 min/stop, as per the BPP) At bus stops outside of the BPP scope: Converting off-line bus stops to in-line stops was not considered as the delay on these routes were not significant enough to warrant the intervention
Entry / exit tapers	• At off-line bus stops that are missing an entry taper, an exit taper, or both tapers (aligned with the BPP methodology)
Bus stop lengthened	 At bus stops where the box is shorter than 15m (aligned with the BPP methodology)
Bus stop bypass	• Where a bus stop falls within a corridor segment for which painted cycle lanes or separated cycle lanes were identified as an indicative intervention (refer Section 6.2.2 below)

6.2.2. Midblock

Interventions were considered in the corridor midblock to improve journeys for bus passengers, cyclists, and pedestrians and to address safety concerns for road users. The bus-specific interventions (transit lanes and widened traffic lanes) were matched to segments based on the outputs from the Wellington Bus Priority Programme (BPP). For all other interventions, rules were applied to suitably match the interventions to corridor segments. The rules used for identifying suitable interventions in the corridor midblock are outlined in Table 46.

Table 46: Interventions in the corridor midblock

Intervention	Where it was considered for the indicative solution
Transit lane	 On corridors within the BPP scope: Where transit lanes were identified through the BPP (where midblock congestion delay is greater than 1.0 min/km, as per the BPP) On corridors outside of the BPP scope: Transit lanes were not considered as the delay on these routes were not significant enough to warrant the intervention
Widened traffic lane	 On corridors within the BPP scope: Where widening corridors were identified through the BPP (where road geometry causes a reduction of free-flow speed greater than 0.4 min/km, as per the BPP) On corridors outside of the BPP scope: Widened traffic lanes were not considered as the delay on these routes were not significant enough to warrant the intervention
Separated cycle lane	• Where the current cycling LOS rating is D or worse and the motor vehicle speeds and volumes correspond to physical segregation of cyclists from motor vehicles, as per Figure 34
Painted cycle lane	• Where the current cycling LOS rating is D or worse and the motor vehicle speeds and volumes correspond to cycle lanes, as per Figure 34
Neighbourhood greenway	 Where the current cycling LOS rating is D or worse and the motor vehicle speeds and volumes correspond to a shared carriageway, as per Figure 34
Shared zone	 On a case-specific basis, where a shared zone may be appropriate given the road environment and the volumes of motor vehicles, cyclists, and pedestrians
Off-road cycle path	 On a case-specific basis, where separated cycle lanes are appropriate and there is suitable off-road space for a path
Widened footpath or shared path	• On a case-specific basis, where footpath widths are known to be constrained for the pedestrian demand

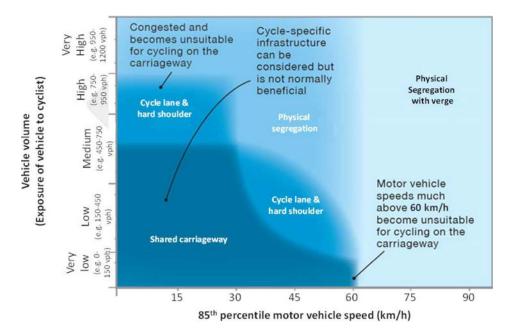


Figure 34: Guidance on the separation of cyclists and motor vehicles⁵⁵

6.2.3. Intersections and crossings

Interventions were considered at intersections and crossings to improve journeys for bus passengers, cyclists, and pedestrians and to address safety concerns for road users. The bus-specific interventions (such as signal improvements, queue jumps, etc.) were matched to segments based on the outputs from the Wellington Bus Priority Programme (BPP). For all other interventions, rules were applied to suitably match the interventions to intersections and crossings. The rules used for identifying suitable interventions at intersections and crossings are outlined in Table 47.

Table 47: Interventions at intersections and crossings

Intervention	Where it was considered for the indicative solution
Signal phase adjustments	 On corridors within the BPP scope: Where signal phase adjustments were identified through the BPP (where the queue service delay is greater than 10s and the control delay is 20–35s, as per the BPP) On central city corridors: Where pedestrian delay is 10–40s
Addition of missing pedestrian leg at an intersection	• At intersections where one or more formalised pedestrian crossing points are missing (i.e., kerb ramps at unsignalized intersections or a signalised pedestrian leg at signalised intersections)
Minor intersection works (additions to an intersection without redesign)	 At intersections where there have been 4–9 injury crashes over the 10-year data period At intersections where there is a demonstrated need or opportunity for minor additions to the intersection without needing significant redesign (for example, cycle waiting facilities, cycle detection, pedestrian countdown timers, localised footpath widening, etc.)
Minor intersection redesign	 On corridors within the BPP scope: Where minor intersection redesign was identified through the BPP (where the control delay is 35–55s, as per the BPP) On central city corridors: Where pedestrian delay is greater than 40s At intersections where there have been 10–15 injury crashes over the 10-year data period
Major intersection redesign (major reconfiguration of the intersection)	 On corridors within the BPP scope: Where major intersection redesign was identified through the BPP (where the control delay is greater than 55s, as per the BPP) At intersections where there have been 16 or more injury crashes over the 10-year data period

⁵⁵ Sourced from Austroads' Cycling Aspects of Austroads Guides (Third Edition, 2017)

Intervention	Where it was considered for the indicative solution
Courtesy crossing (new)	 On central city corridors: Where the severance delay for pedestrians is 10–20s On key suburban corridors: Where there is an identified need to improve bus stop access for pedestrians, assigned as per Table 48 below
Zebra crossing (new or upgraded from existing courtesy crossing)	 On central city corridors: Where the severance delay for pedestrians is 20–40s, or where severance delay is greater than 40s and the existing formal crossing points are spaced closer than 200m apart On key suburban corridors: Where there is an identified need to improve bus stop access for pedestrians, assigned as per Table 48 below
Signalised crossing (new or upgrade from existing unsignalized crossing)	 On central city corridors: Where the severance delay for pedestrians is greater than 40s and the existing crossing points are spaced further than 200m apart On key suburban corridors: Where there is an identified need to improve bus stop access for pedestrians, assigned as per Table 48 below
New grade-separated crossing	• On a case-specific basis, where a new grade- separated crossing is appropriate given vehicle volumes and pedestrian crossing demand

Table 48: Crossing upgrades on key suburban corridors

Walking LOS score⁵6	New courtesy crossing	New zebra crossing	New signalised pedestrian crossing			
20	0	0	0			
40	1 every 4 bus stops	1 every 8 bus stops	0			
60	1 every 2 bus stops	1 every 4 bus stops	0			
80	1 per bus stop	1 every 8 bus stops	1 every 8 bus stops			
100	1 per bus stops	1 every 4 bus stops	1 every 8 bus stops			
0.0	O A C C C C C C C C C C	and the second				

6.3. Step 2: Applying logical principles

Through the methodology outlined in Step 1, indicative interventions were identified for every corridor segment. While this process identified toolkit solutions for each segment, a second process was undertaken to reconcile any conflicting interventions and to ensure consistent treatment between adjoining midblock segments.

Interventions needed to be reconciled where two or more assigned interventions for the same location conflicted. Where this occurred, the more significant intervention was prioritised, and the other intervention(s) was removed from the indicative solution. For example, if an intersection was assigned a minor intersection redesign due to pedestrian delay and assigned a major intersection redesign due to the number of injury crashes, the intersection was ultimately assigned a major intersection redesign only.

To ensure coherent treatment between adjoining midblock segments, consideration was given to the consistency of interventions that are implemented along the length of the corridor (such as bus lanes or cycle lanes). Where identified interventions varied between adjoining corridor segments, consideration was given to adjusting the assigned interventions on one or more of the adjoining segments. For example, if one corridor segment within the central city was identified for a neighbourhood greenway, but adjacent segments of the same corridor on either side were identified for cycle lanes, it would be more logical for all sections to be allocated cycle lanes to provide a consistent facility. However, if one corridor segment within the central city was identified for a cycle lane, but adjacent segments of the same corridor on either side were identified for a cycle lane, but adjacent segments of the same corridor on either side were identified for a cycle lane, but adjacent segments of the same corridor on either side were identified for a cycle lane, but adjacent segments of the same corridor on either side were identified for a cycle lane.

⁵⁶ Refer Section 4.2.3.1 for further details on the qualitative walking LOS scores.

separated cycle lane, changes are not required for coherent treatment. Consistency can be achieved between painted and separated cycle lane treatments.

6.4. Step 3: Assessing the technical feasibility

The previous two steps identified interventions that could be applied to address problems that arise within the City Streets study area. However, some interventions may not be mutually compatible (for example, due to the fact that there is not sufficient space within road corridors, and the sum total of all possible interventions may not be affordable within the project budget).

Once interventions were identified, their space requirements were checked against corridor geometries to determine if the interventions could be physically accommodated within the available corridor space. If corridor widening would be required to deliver the intervention, it was assumed that this would be undertaken if it could be achieved by acquiring four or less properties and through retaining wall construction. If corridor widening required the acquisition of more than four properties or required earthworks above and beyond retaining wall construction, the intervention was removed from the packages.

This technical feasibility assessment was indicative only and was undertaken to assist in indicative cost estimate and cost benefit analysis, rather than a final prioritised programme. Further detailed assessment will be required at a later stage to identify the feasibility of any solutions.

7. Step 4: Cost estimates

A high-level cost estimation approach was used to identify indicative costs for the corridor segments. This approach is based on unit cost estimates for individual interventions included in the intervention toolbox, unit costs for enabling works, and an additional percentage for project overhead costs and contingency. Allowances for other location-specific costs, such as property acquisition where it is needed to address specific issues, are also included.

This approach entails:

- Identifying the quantity (number, distance, etc.) of each intervention included on each corridor segment.
- Quantifying the enabling works required to implement the interventions on each corridor segment.
- Multiplying quantities by unit cost rates to obtain total estimated costs; where interventions were identified at the intersection of two or more City Streets corridor segments, the cost of that intervention was equally divided between all segments.
- Adding a percentage mark-up for project overhead costs (42%) and contingency to account uncertainty in assigned interventions and/or for interventions not included in the indicative solutions at this stage (20%)

Actual costs are likely to vary from these indicative cost estimates for a variety of reasons, including hard-to-predict local cost factors like utility relocation and decisions to implement a non-standard design. As a result, a low-high range of unit cost rates is provided to provide an indication of the potential degree of variation between locations. Mid-point cost estimates are generally used for the cost estimate.

The unit cost estimates are summarised in the following tables. In general, unit cost rates are drawn from recent projects undertaken in Wellington.

Table 49: Estimated costs for City Streets interventions

Location	Intervention	Unit	Assumptions		Costs per unit		Days of construction ⁵⁷		Total cost		
			Low	High	Low	High	Low	High	Low	Mid-point	High
	Existing bus stop removed	Stop	Remove signs and markings	Remove signs, markings, and shelter	\$2,000	\$6,000	2	4	\$5,000	\$10,300	\$15,600
	New bus stop	Stop	Includes signs and markings	Includes signs, markings, and shelter	\$1,000	\$30,000	5	10	\$8,500	\$31,250	\$54,000
s stops	New double length bus stop	Stop	Includes shelter and seating	Includes shelter and seating	\$60,000	\$80,000	10	15	\$75,000	\$95,500	\$116,000
Bus	Bus stop converted to in-line stop	Stop	No drainage work	Move one sump, move RTI sign, and add shelter	\$10,000	\$75,000	5	12	\$17,500	\$60,650	\$103,800
	Entry / exit tapers	Stop			\$500	\$1,000	1	2	\$2,000	\$3,900	\$5,800
	Bus stop lengthened	Stop			\$500	\$1,000	1	2	\$2,000	\$3,900	\$5,800
	Bus stop bypass	Stop			\$60,000	\$90,000	10	14	\$75,000	\$99,300	\$123,600
	Transit lane (one direction)	km	No relocation of significant items	Relocation of some centre islands	\$65,000	\$100,000	3	60	\$69,500	\$156,750	\$244,000
Midblock	Second public transport spine ⁵⁸	LS							\$1,059,476	\$1,995,034	\$2,930,592
Mi	Widened traffic lane	km	Parking removed only, change signs and markings	Kerb realignment required, and change signs and markings	\$1,000	\$800,000	5	60	\$8,500	\$476,250	\$944,000

 ⁵⁷ Refer Table 50 for traffic management rates.
 ⁵⁸ Refer Table 51 for breakdown of estimated costs for the second public transport spine.

Location	Intervention	Unit	Assumptions			Costs per unit		s of ruction	Total cost		
			Low	High	Low	High	Low	High	Low	Mid-point	High
	Separated cycle lane (one direction)	km	Kerb-separated cycleway at road level, no drainage work	Kerb-separated cycleway at footpath level, drainage work	\$523,200	\$5,000,000	105	158	\$680,700	\$3,029,350	\$5,378,000
	Painted cycle lane (one direction)	km	White paint only White paint only green paint only intersec major dr		\$25,000	\$125,000	5	60	\$32,500	\$150,750	\$269,000
	Neighbourhood greenway	km	Signs and markings	Signs and markings, and kerb buildouts with trees	\$60,000	\$125,000	15	45	\$82,500	\$157,750	\$233,000
Midblock	Shared zone	m²	Signs and markings, kerb realignment, street furniture, trees, asphalt surface	Signs and markings, kerb realignment, street furniture, trees, brick pavers	\$404	\$690	0.2	0.6	\$704	\$1,417	\$2,130
	Off-road cycle path	km			\$100,000	\$500,000	105	158	\$257,500	\$567,750	\$878,000
	Widened footpath or shared path	m²	Resurface with asphalt	Resurface with concrete	\$100	\$200	0.05	0.05	\$175	\$254	\$332
Intersections and crossings	Signal phase adjustments	Intersection or crossing	No physical works	Minimal physical works (new signals and/or markings)	\$5,000	\$10,000			\$5,000	\$7,500	\$10,000
Intersec cros	Addition of missing pedestrian leg at signalised intersection	Leg			\$10,000	\$20,000	5	10	\$17,500	\$30,750	\$44,000

Location	Intervention	Unit	Assumptions		Costs per unit		Days of construction ⁵⁷		Total cost		
			Low	High	Low	High	Low	High	Low	Mid-point	High
	Minor intersection works (additions to an intersection without redesign) ⁵⁹	Intersection or crossing							\$11,500	\$30,550	\$49,600
	Minor intersection redesign	Intersection	Upgrades to crossings at unsignalised intersection	Upgrade to signalised intersection (ex, traffic lane reconfiguration)	\$50,000	\$300,000	14	60	\$71,000	\$257,500	\$444,000
ssings	Major intersection redesign (major reconfiguration of the intersection)	Intersection	Upgrade unsignalised intersection to signalised	Reconfiguration of traffic lanes at large/complex intersection	\$1,000,000	\$3,000,000	60	180	\$1,090,000	\$2,261,000	\$3,432,000
Intersections and crossings	Upgraded unsignalised crossing	Crossing	Zebra crossing with kerb extensions and median refuge	Raised zebra crossing with flood lights, requires drainage works	\$20,000	\$50,000	5	10	\$27,500	\$50,750	\$74,000
Interse	Unsignalised crossing upgraded to signalised	Crossing	Upgrade to signalised crossing	Upgrade to dual pedestrian and cycling signalised crossing with mast arms	\$190,000	\$250,000	10	20	\$205,000	\$251,500	\$298,000
	New unsignalised crossing	Crossing	Kerb extensions and median refuge	Raised zebra crossing with flood lights, requires drainage	\$15,000	\$50,000	5	10	\$22,500	\$48,250	\$74,000

⁵⁹ Refer Table 52 for breakdown of estimated costs for minor intersection works.

Location	Intervention	Unit	Assumptions		Costs per unit		Days of construction ⁵⁷		Total cost		
			Low	High	Low	High	Low	High	Low	Mid-point	High
	New signalised crossing	Crossing	New signalised crossing	New dual pedestrian and cycling signalised crossing with mast arms	\$190,000	\$210,000	10	15	\$205,000	\$225,500	\$246,000
	New grade-separated crossing	Crossing	Pedestrian overpass	Pedestrian and cycle overpass	\$400,000	\$500,000	30	60	\$445,000	\$544,500	\$644,000

Table 50: Estimated costs for enabling works

Enabling works	Unit	Assun	nptions	Costs	per unit	Days of construction		Total cost		
, and the second s		Low	High	Low	High	Low	High	Low	Mid-point	High
Remove sump and install new	each	Connect to adjacent existing lead	Connect to existing lead within 10m	\$4,000	\$7,000	1	3	\$5,500	\$9,850	\$14,200
Realign kerb	km	Complete kerb and channel rebuild	Complete kerb and channel rebuild	\$250,000	\$800,000	60	60	\$340,000	\$642,000	\$944,000
Remove road markings and repaint	km	Minimal, simple line markings	Extensive line marking and hatching	\$1,000	\$50,000	5	5	\$8,500	\$35,250	\$62,000
Relocate sign	each			\$500	\$750	0	0	\$800	\$1,135	\$1,470
Remove traffic island	m²	Does not include reinstatement of the road	Includes reinstatement of the road	\$50	\$75	1	1	\$1,550	\$2,013	\$2,475
Remove tree	each	Small tree	Large tree	\$500	\$2,000	1	1	\$2,000	\$3,200	\$4,400
Relocate RTI sign	each	Existing pole easy to relocate	Difficulty in finding a suitable location around services	\$10,000	\$15,000	1	1	\$11,500	\$14,450	\$17,400
Relocate electricity pole	each	Existing pole easy to relocate	Difficulty in finding a suitable location around services	\$25,000	\$30,000	2	3	\$28,000	\$32,600	\$37,200
Relocate signal pole	each	Existing pole easy to relocate	Difficulty in finding a suitable location around services	\$25,000	\$30,000	2	3	\$28,000	\$32,600	\$37,200
Remove signal pole and replace with signal on mast arm	each	Existing pole easy to remove	Difficulty in finding a suitable location around services	\$20,000	\$30,000	2	3	\$23,000	\$30,100	\$37,200
Construct retaining wall	m ² face area	Less than 2m high	More than 2m high	\$3,000	\$6,100	0	0	\$3,300	\$5,060	\$6,820
Construct new pedestrian staircase	stair flight			\$40,000	\$60,000	5	10	\$47,500	\$65,750	\$84,000
Relocate electricity substation	each			\$50,000	\$100,000	2	4	\$53,000	\$81,300	\$109,600
Traffic management	day			\$1,500	\$2,400			\$1,500	\$1,950	\$2,400

Table 51: Estimated cost for second public transport spine (parallel to the Golden Mile)

Element	Quantity	Unit	Costs per unit (incl.	traffic management)	Total cost (\$)			
			Low	High	Low	Mid-point	High	
Transit lane	4.6	km	\$69,500	\$244,000	\$317,476	\$716,034	\$1,114,592	
Double length bus stop	8	stop	\$75,000	\$116,000	\$600,000	\$764,000	\$928,000	
Minor intersection redesign	2	intersection	\$71,000	\$444,000	\$142,000	\$515,000	\$888,000	
		Total:	\$1,059,476	\$1,995,034	\$2,930,592			

Table 52: Estimated costs for minor intersection works

Intervention	Costs per unit (\$)		Days of construction		Traffic management costs (\$)		Total cost (\$)			
	Low	High	Low	High	Low	High	Low	Mid-point	High	
Cycle detection	\$2,000	\$4,000	1	2	\$1,500	\$4,800	\$3,500	\$6,150	\$8,800	
Push button replaced with automatic pedestrian phase	\$2,000	\$4,000	1	2	\$1,500	\$4,800	\$3,500	\$6,150	\$8,800	
Localised footpath widening	\$2,000	\$4,000	3	5	\$4,500	\$12,000	\$6,500	\$11,250	\$16,000	
Cycle waiting facilities (advanced stop boxes, advanced stop lines, hook-turn boxes)	\$5,000	\$10,000	2	4	\$3,000	\$9,600	\$8,000	\$13,800	\$19,600	
Countdown timers	\$10,000	\$40,000	1	4	\$1,500	\$9,600	\$11,500	\$30,550	\$49,600	

8. Step 5: Developing scenarios

The outcome from the first four steps in the prioritisation process was identifying the following across all 163 corridor segments:

- Scores for six prioritisation criteria
- Indicative toolkit intervention(s)
- Indicative costs to implement the identified intervention(s)

Using these outputs, a range of investment scenarios were developed. Scenarios were tested by applying different combinations of weightings to the six prioritisation criteria scores. The output for each investment scenario is the list of the 163 corridor segments, prioritised according to the applied weightings.

This output provides us with the priority order of the list, but it is necessary to have a view on the potential investment window in order to define and test indicative programmes and demonstrate the potential costs and benefits of investment. Based on the PBC indicative cost for City Streets of \$350m, we have defined our indicative window of investment for the City Streets package as between \$250m and \$400m at the lower and upper bounds. This range is used for defining which segments are included in each scenario and for assessing each package.

Three groups of investment scenarios were tested:

- Balanced
- Mode-targeted
- LGWM PBC-funding-aligned

Irrespective of the scenario, the indicative toolkit solutions identified on the corridor segments remain the same: they take a multi-modal approach to addressing the most appropriate issues across all modes based on wider levels of service considerations.

The purpose of developing the scenarios through the prioritisation process is to provide a consistent and systematic basis on which to compare competing multi-modal and place-based issues. The scenarios are guides that will inform the overall prioritisation of activity for the City Streets IBC and assist in identifying a package of works that optimally delivers against the City Streets investment objectives. However, the prioritisation process is not a black box that dictates the overall prioritisation. There are other considerations that cannot be systemised but will inform the final priorities and, therefore, the final scenario package.

8.1. Balanced scenarios

Three balanced scenarios were tested, for which the six prioritisation criteria were broadly weighted equally. Multiple options were considered to test the sensitivity of the prioritisation criteria to incremental changes in the weightings.

The weightings applied to the prioritisation criteria for the three balanced options, A to C, are outlined in Table 53.

Table 53: Prioritisation criteria weightings for the balanced scenarios

Option	Prioritisation criteria							
	Public transport	Cycling	Walking	Amenity	Safety	Growth		
А	20%	20%	10%	10%	20%	20%		
В	17%	17%	17%	17%	16%	16%		
С	25%	25%	15%	10%	15%	10%		

8.2. Mode-targeted scenarios

Two mode-targeted scenarios were tested: a public-transport-targeted scenario, and a walking-and-cycling-targeted scenario. Under each of these scenarios, weighting was placed fully on the corresponding prioritisation criteria for the relevant mode(s). These options tested the benefits of addressing the largest level of service gaps for a particular mode or modes.

The weightings applied to the prioritisation criteria for the three balanced options, A to C, are outlined in Table 54.

Option	Prioritisation criteria							
	Public transport	Cycling	Walking	Amenity	Safety	Growth		
Public transport targeted	100%							
Walking and cycling targeted		50%	50%					

Table 54: Prioritisation criteria weightings for the mode-targeted scenarios

8.3. LGWM PBC-funding-aligned scenarios

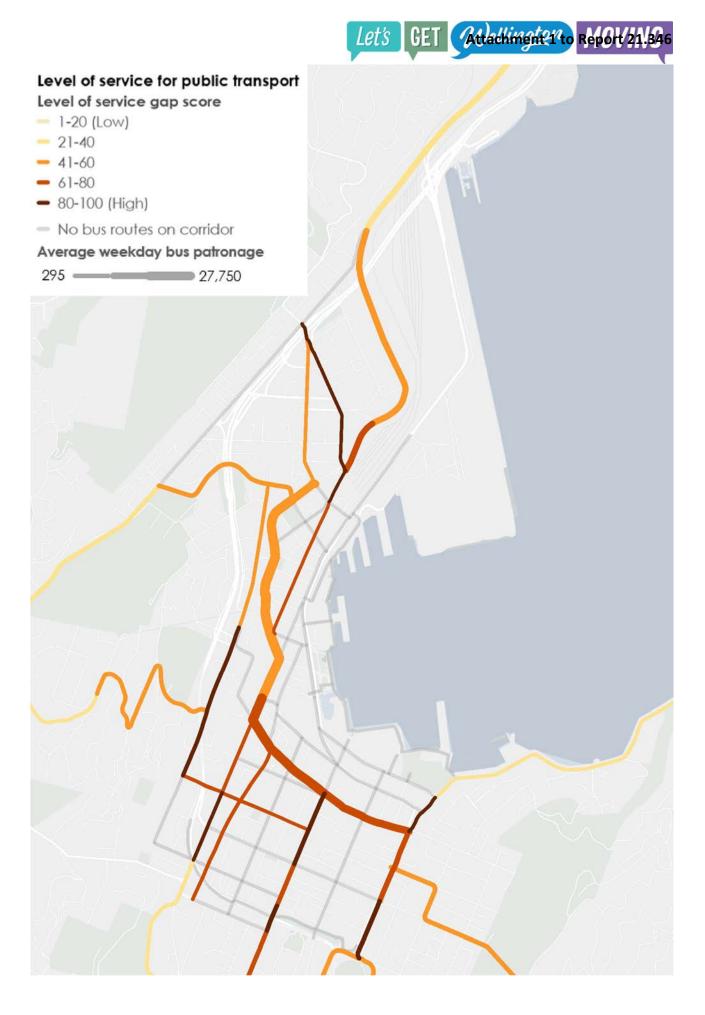
The LGWM PBC-funding-aligned scenarios were built based on the indicative modal funding envelopes identified in the PBC for City Streets: \$250m of investment for public transport, and \$100m for walking and cycling in the city centre. The modal-targeted scenarios were used as the foundation to build the PBC-funding-aligned scenarios. The public-transport-targeted scenario provided the priority order for targeting public transport investment funding, and the walking-and-cycling-targeted scenario provided the priority order for targeting provided the priority order for targeting walking and cycling investment funding (in the city centre only).

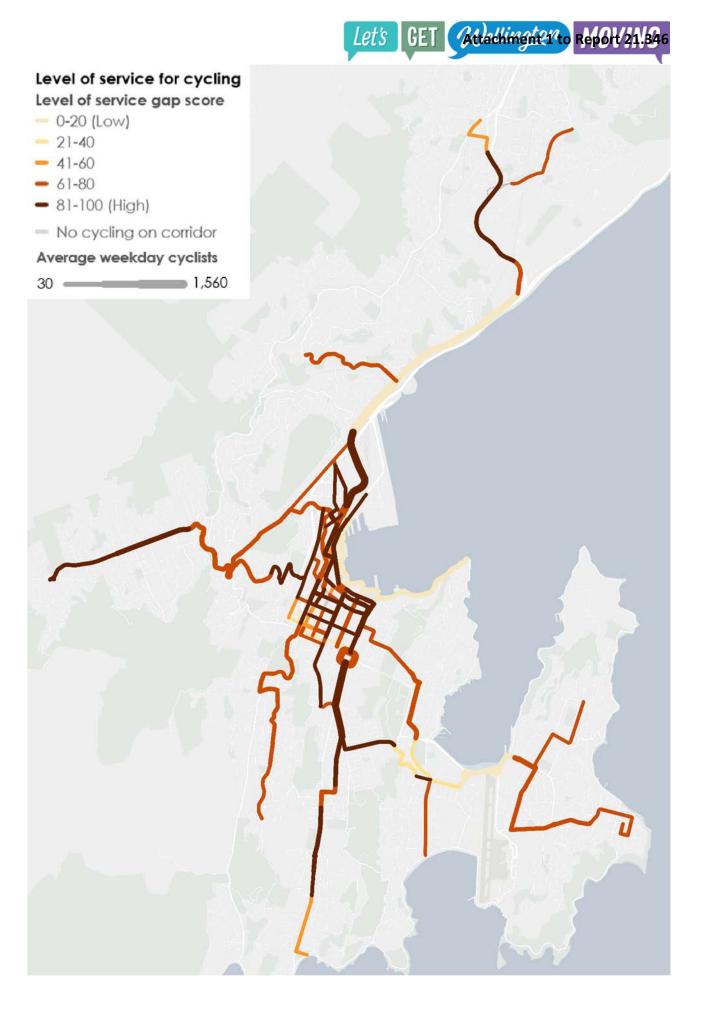
Two scenarios were tested using this approach:

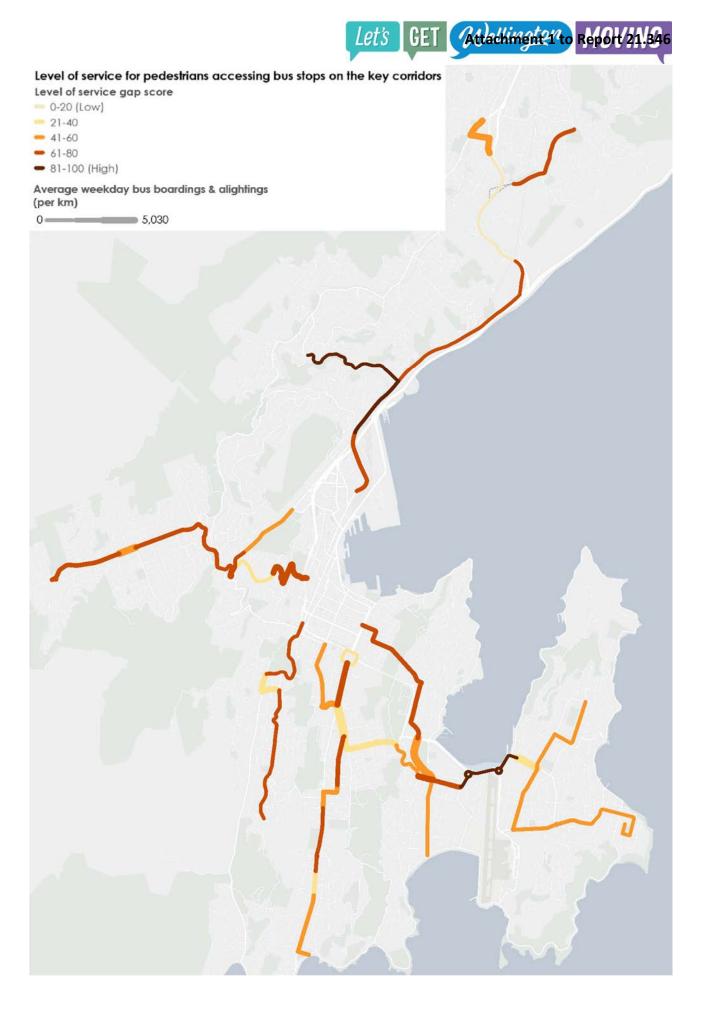
- Public transport funding allotted first.
- Walking and cycling funding in the city centre allotted first.

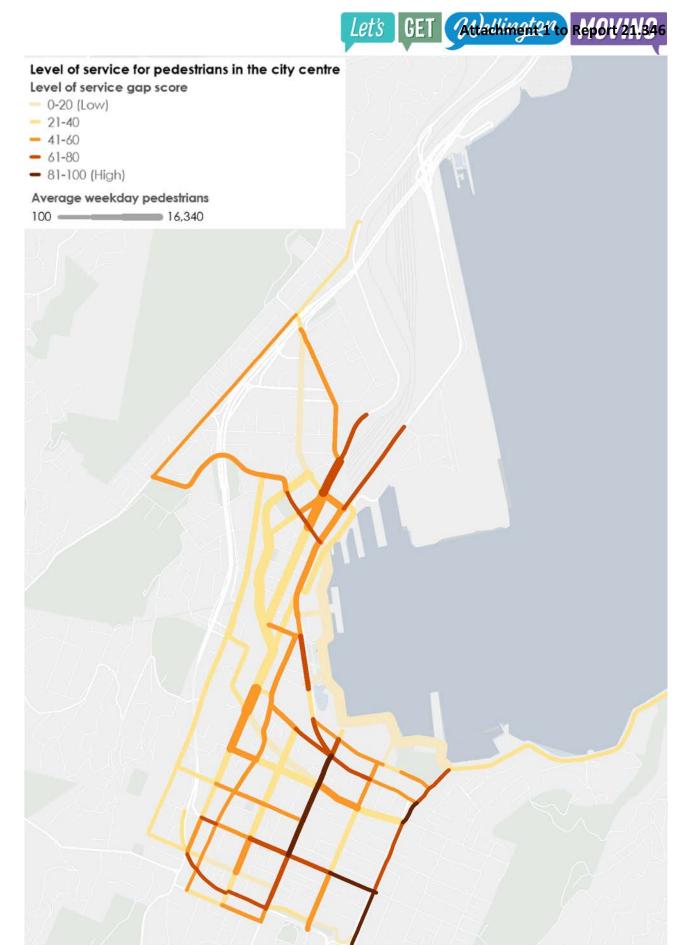
To identify packages for the lower and upper bounds of the investment window (\$250m and \$400m), the following process was used:

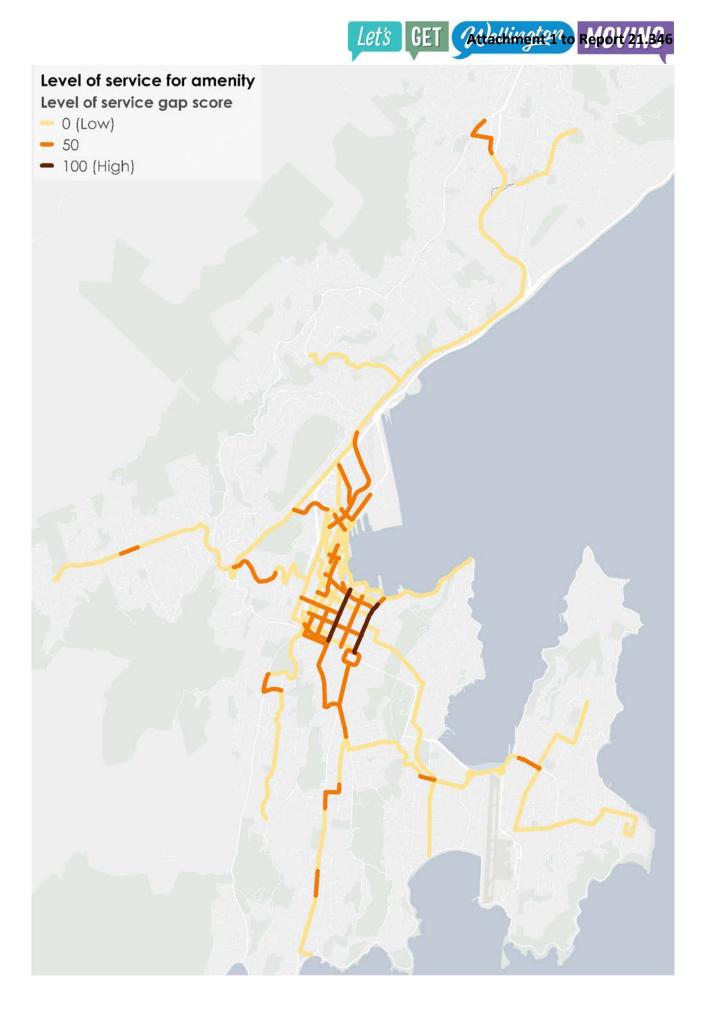
- Public transport funding allotted first:
 - Step 1: Allot \$180m to the top prioritised segments from the publictransport targeted scenario.
 - Step 2: Allot \$70m to the top prioritised segments in the city centre from the walking-and-cycling-targeted scenario, excluding any segments

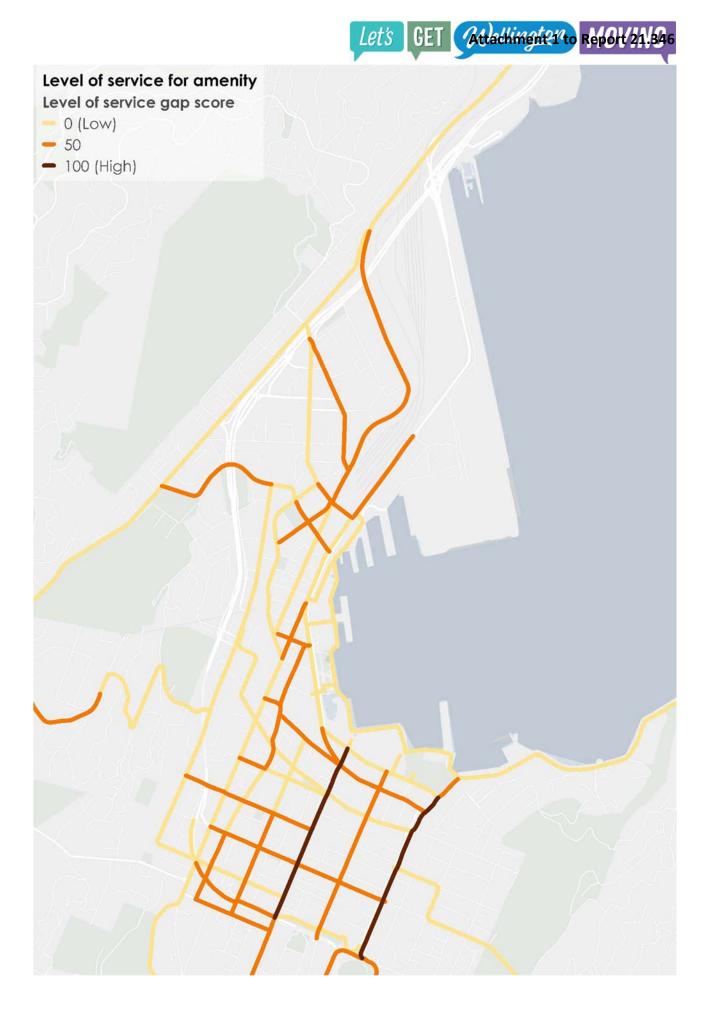

already identified under Step 1; Steps1 and 2 combined form the \$250m lower bound package.

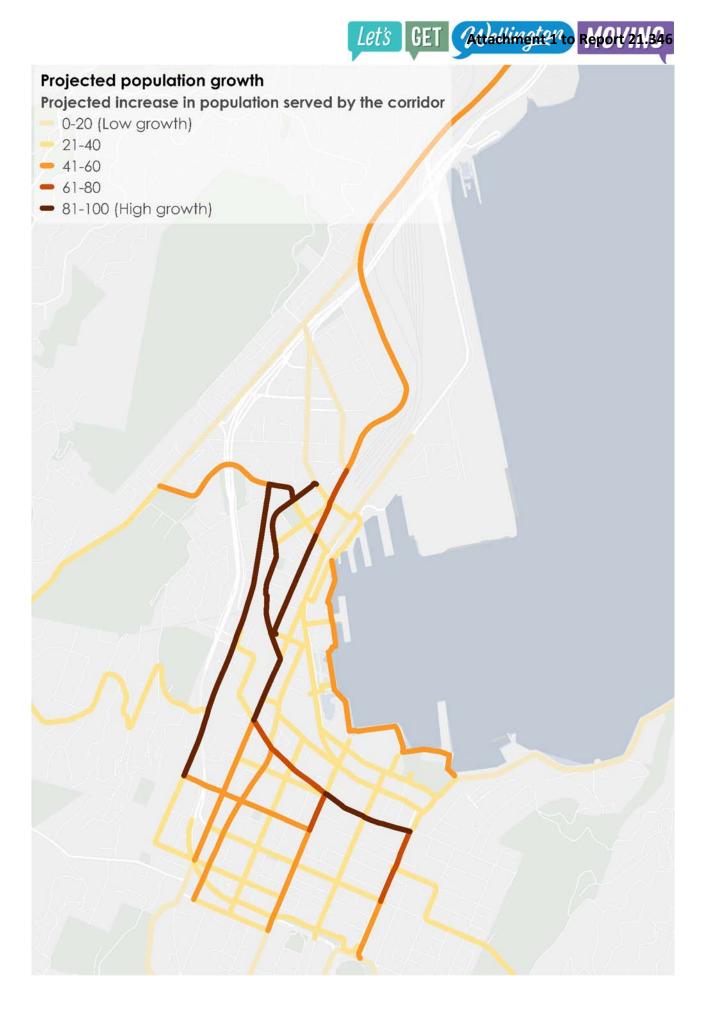

- Step 3: Allot \$105m to the remaining top prioritised segments from the public-transport targeted scenario.
- Step 4: Allot \$45m to the remaining top prioritised segments in the city centre from the walking-and-cycling-targeted scenario; Steps 1 to 4 combined for the \$400m upper bound package.
- Walking and cycling funding in the city centre allotted first:
 - Step 1: Allot \$70m to the top prioritised segments in the city centre from the walking-and-cycling-targeted scenario.
 - Step 2: Allot \$180m to the top prioritised segments from the publictransport targeted scenario, excluding any segments already identified under Step 1; Steps1 and 2 combined form the \$250m lower bound package.
 - Step 3: Allot \$45m to the remaining top prioritised segments in the city centre from the walking-and-cycling-targeted scenario.
 - Step 4: Allot \$105m to the remaining top prioritised segments from the public-transport targeted scenario; Steps 1 to 4 combined for the \$400m upper bound package.

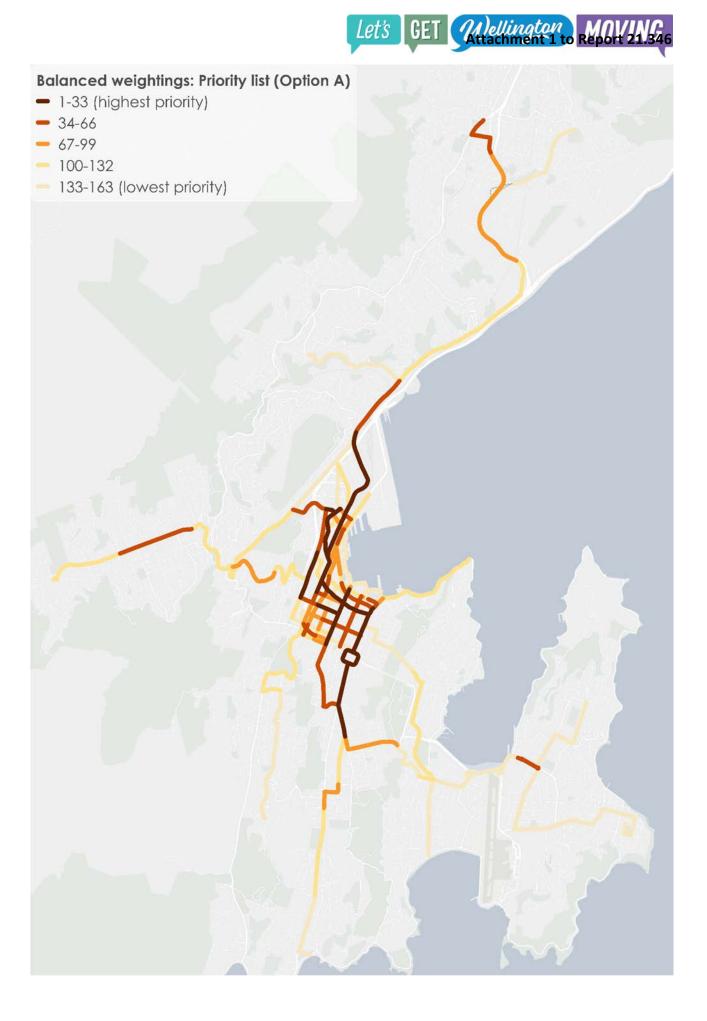

Appendix E: Level of service maps

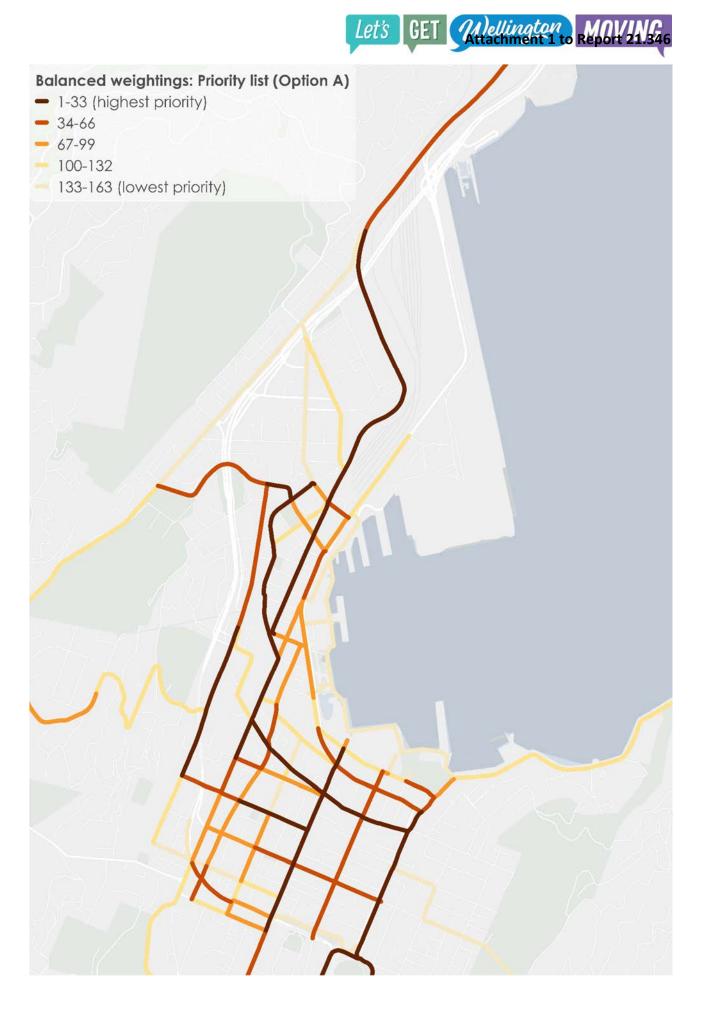


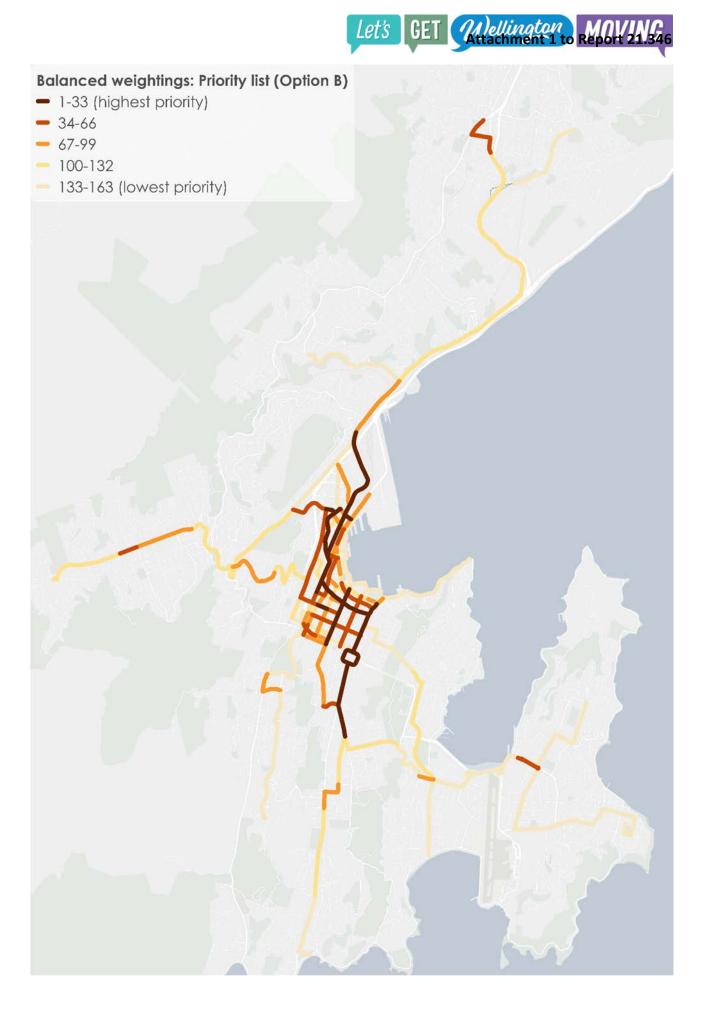


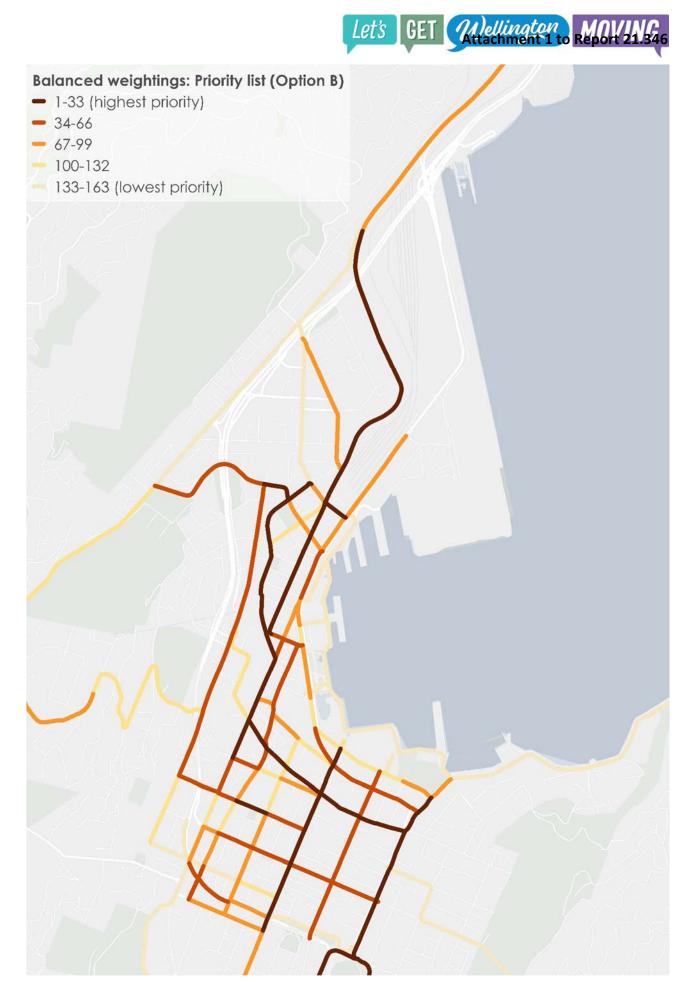



Let's GET Attachinght 1 to Report 21/346

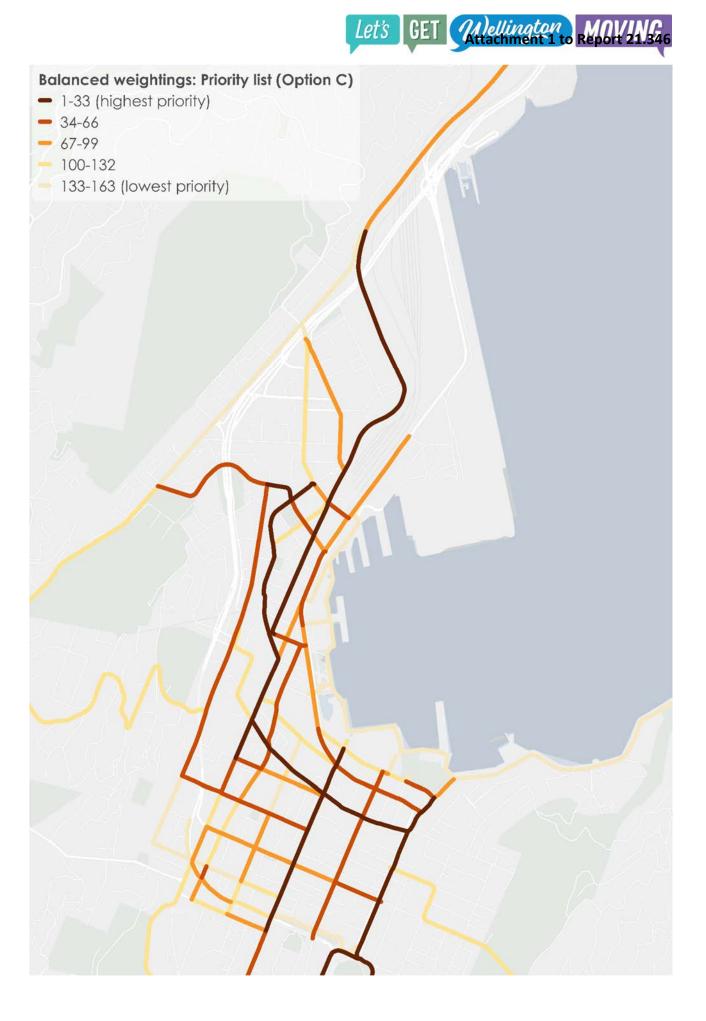


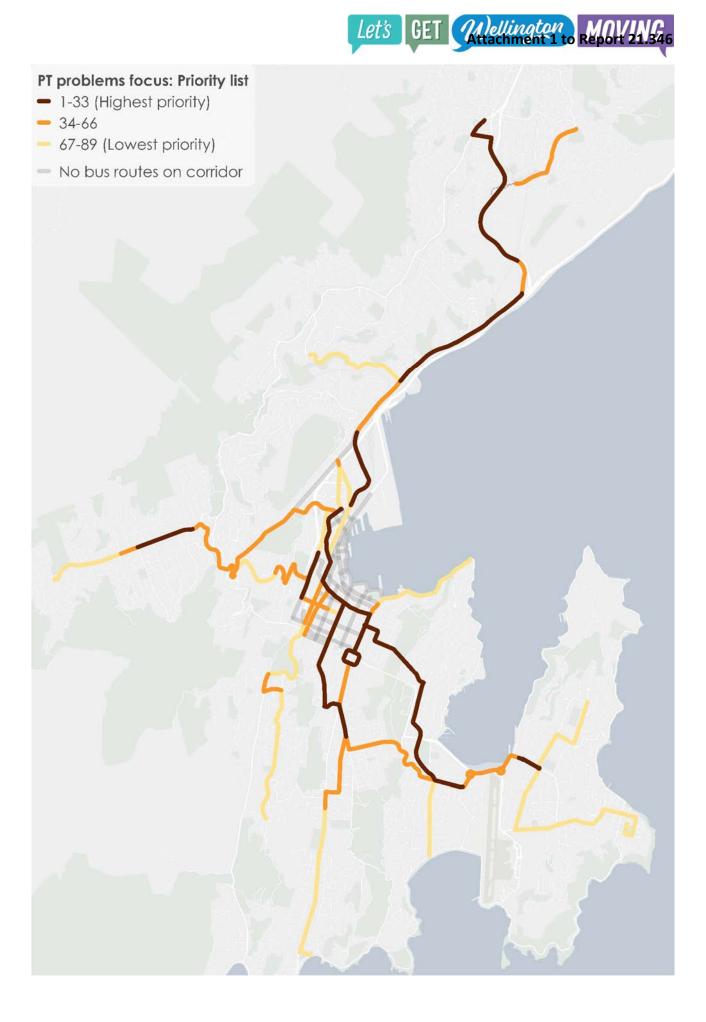


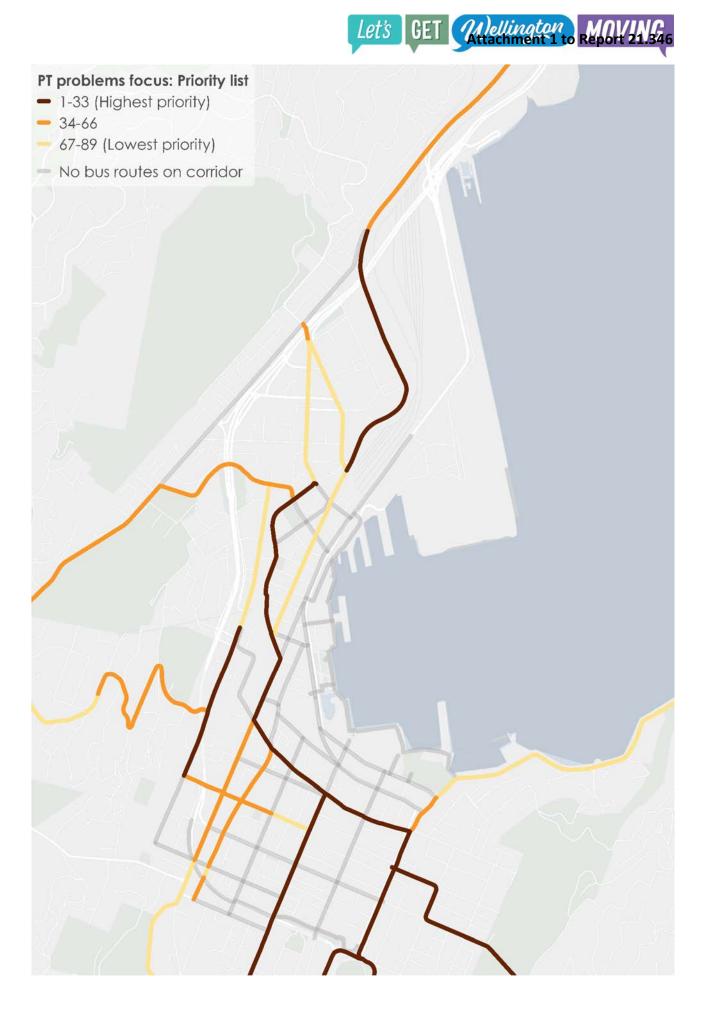


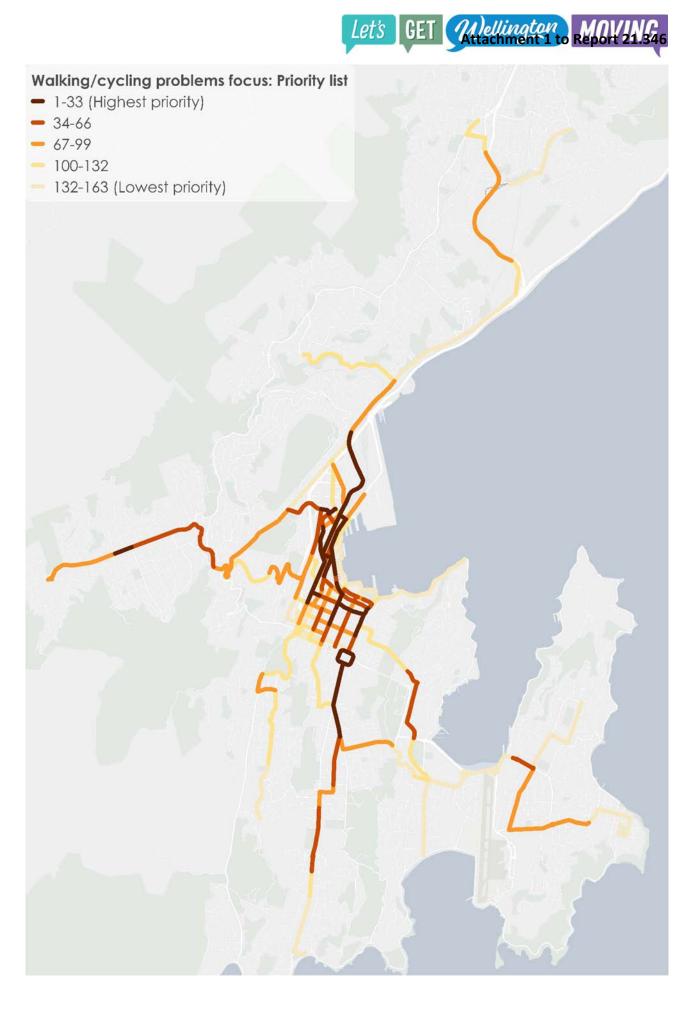


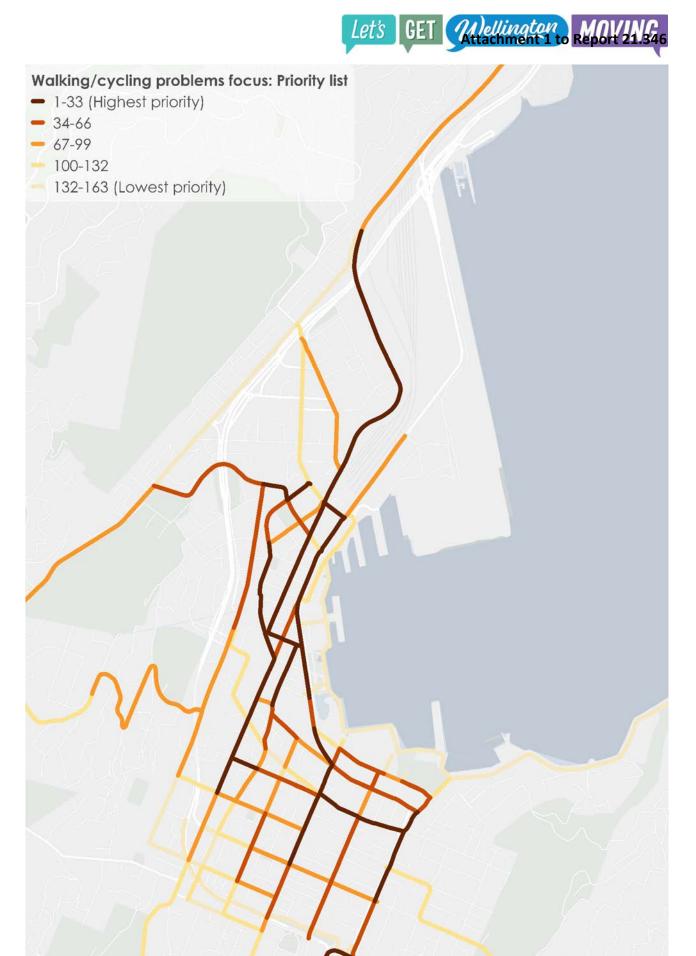

Appendix F: Prioritisation scenarios

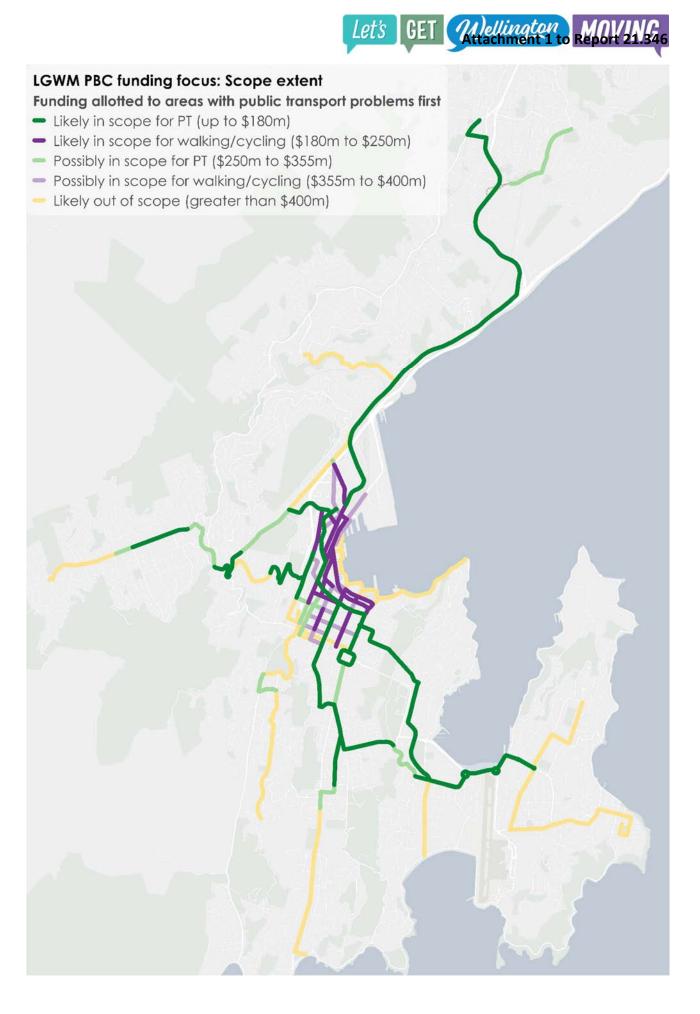


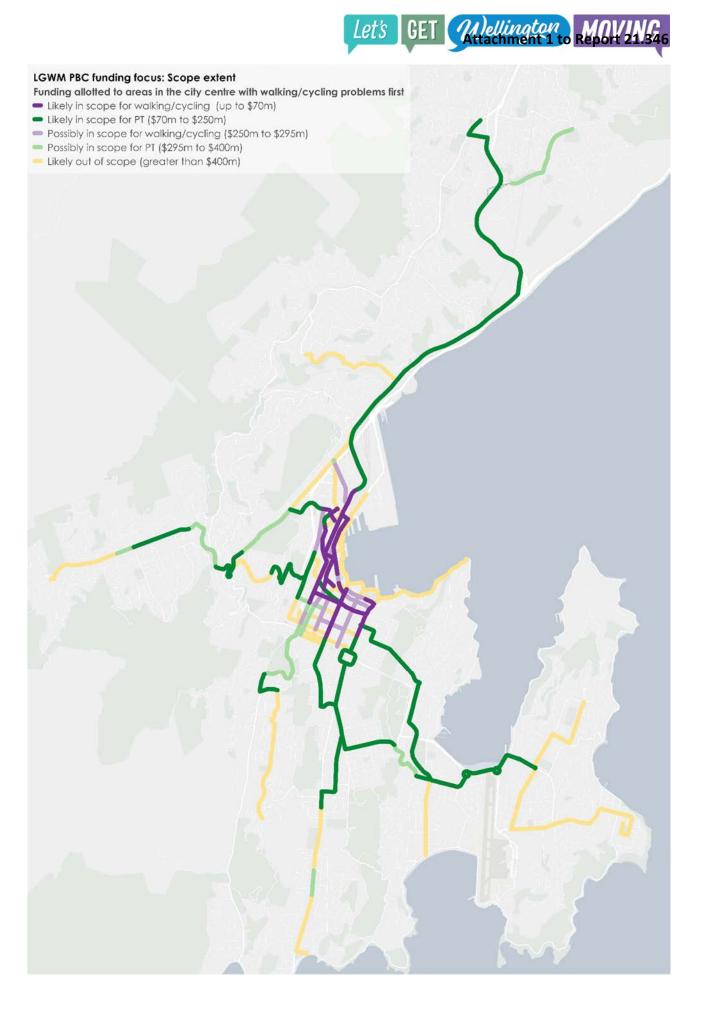






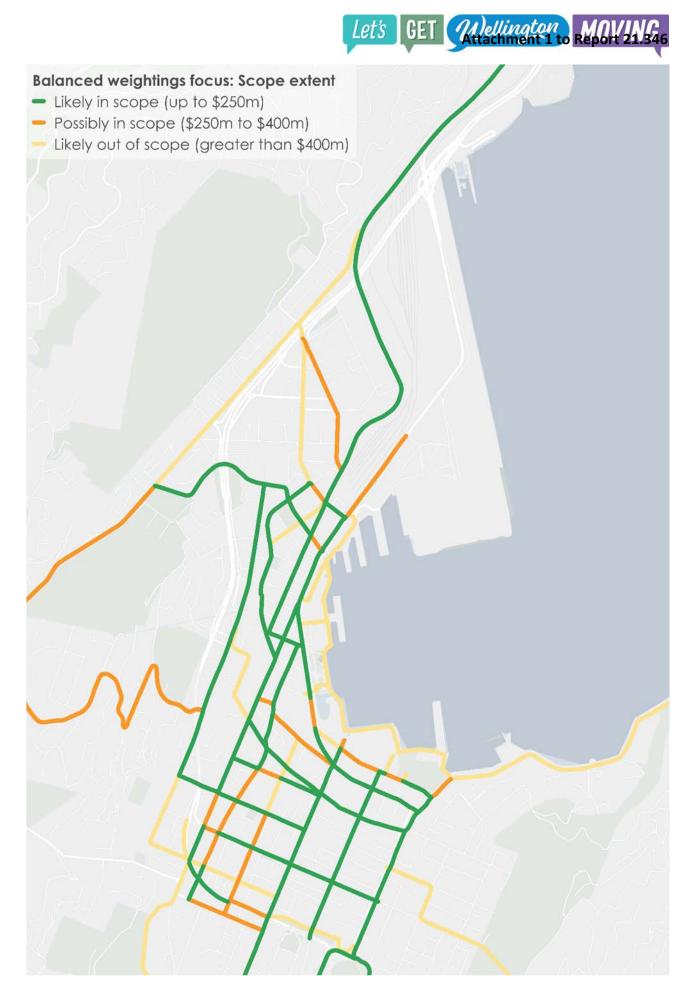


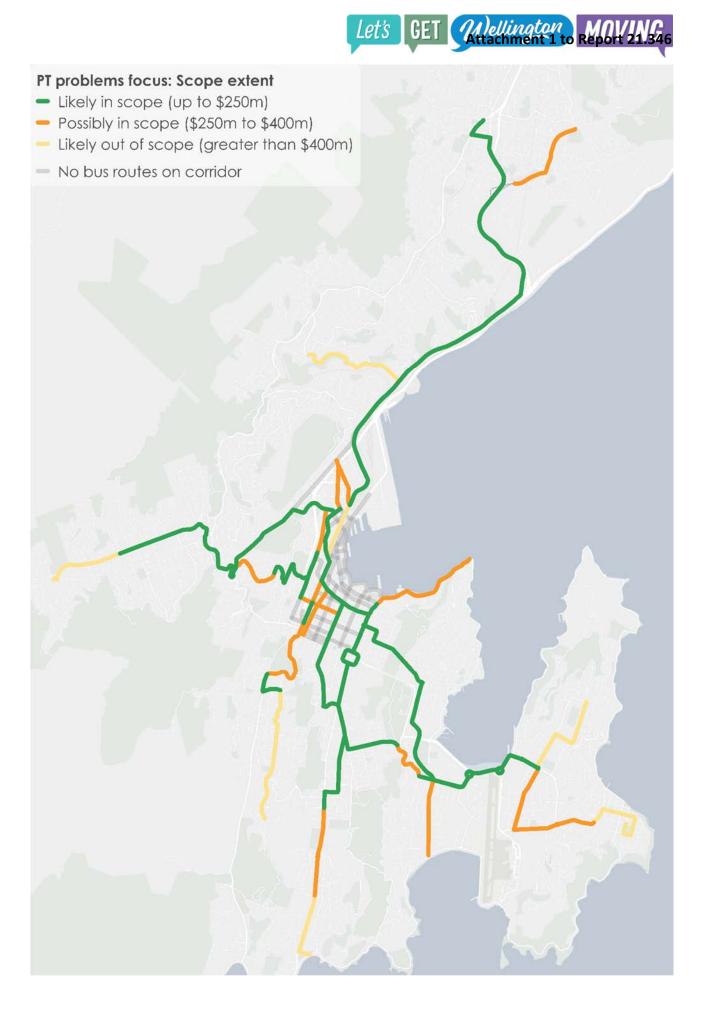




LGWM PBC funding focus: Scope extent

- Funding allotted to areas with public transport problems first
- Likely in scope for PT (up to \$180m)
- Likely in scope for walking/cycling (\$180m to \$250m)
- Possibly in scope for PT (\$250m to \$355m)
- Possibly in scope for walking/cycling (\$355m to \$400m)
- Likely out of scope (greater than \$400m)

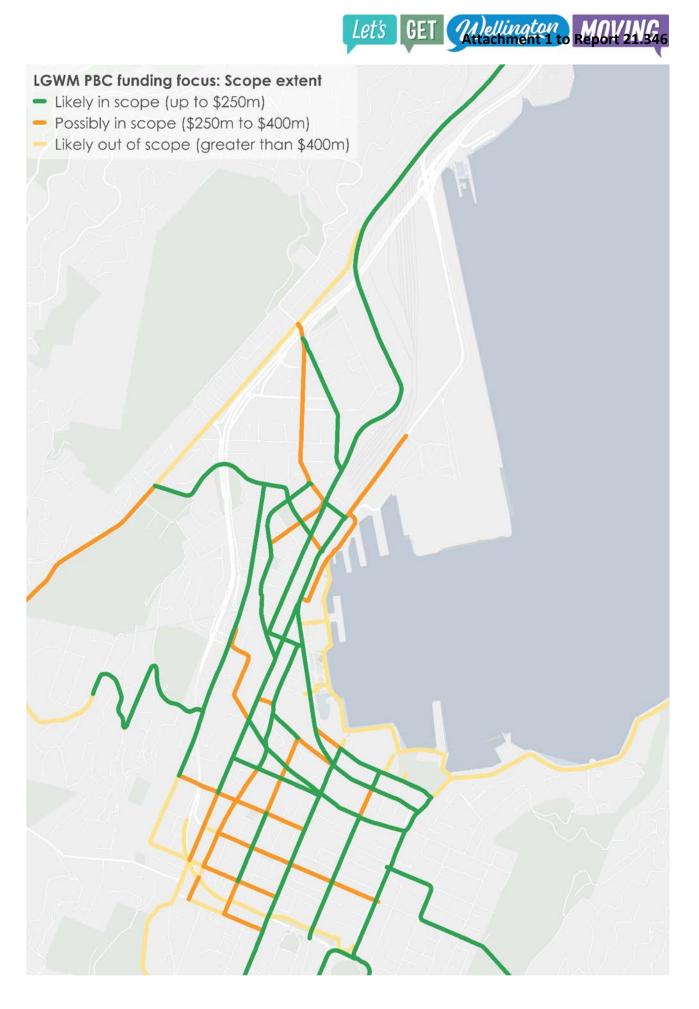






Appendix G: Shortlisted Scenarios – Prioritised against funding levels

Walking/cycling problems focus: Scope extent


- Likely in scope (up to \$250m)
- Possibly in scope (\$250m to \$400m)
- Likely out of scope (greater than \$400m)

LGWM PBC funding focus: Scope extent

- Likely in scope (up to \$250m)
- Possibly in scope (\$250m to \$400m)
- Likely out of scope (greater than \$400m)

Appendix H: City Streets IBC cost benefit analysis methodology – Technical note

1. Overview

This appendix outlines a methodology for cost benefit analysis (CBA) of options for the City Streets Indicative Business Case (IBC). It covers the following topics:

- How demands and benefits for different types of transport users are modelled and valued.
- How option costs are estimated
- How results are expected to be reported

Attachments provide supplementary technical information about specific issues, such as benefit modelling methods.

This appendix should be read in conjunction with other sections of the City Streets IBC that outline:

- How the project area was defined and how spatial-specific input data was sourced for the prioritisation tool and cost benefit analysis
- The intervention toolkit that was developed to identify location-specific interventions that could be applied to address the issues identified in the strategic case.
- How sites in the project area were prioritised to address the issues identified in the strategic case, and how this analysis supported the development of indicative options to understand the implications of higher or lower investment levels and the implications of programmes that target different issues.
- How interventions from the toolbox were applied to those sites.

The basic philosophy behind the indicative option analysis is that the benefits of interventions will depend upon both the type of intervention and the location where it is implemented. For instance, the benefits of a bus lane will vary depending upon whether it is implemented in a location with high public transport demand and significant congestion affecting bus travel speeds, or in a location with low public transport demand and minimal congestion delay. As a result, the benefits of interventions must be considered at a reasonably fine-grained level of detail.

2. Modelling transport demands and benefits

The City Streets project is expected to deliver benefits for users of multiple transport modes. Multiple models and evaluation methods are needed to capture benefits (or disbenefits) for different modes, as no single model adequately captures impacts on all affected modes, including walking, cycling, public transport, and other road users.

The approach used in this analysis is therefore to:

- Undertake an indicative assessment of public transport, cycling, and walking benefits, with high-level/indicative assessment of traffic impacts, at the short-list option stage. This results in relative BCRs that can be used to compare the impacts of different investment scenarios.
- Use Aimsun traffic modelling as a check on the traffic impacts of a 'preferred' option or option variant.

The following table summarises the approach used to model transport demands and value user benefits (or disbenefits) arising from alternative options. A more detailed description of methods is given below, and in technical reports for the underlying models that are attached to this document.

All benefits are valued using guidance from the NZ Transport Agency's Monetised Benefits and Costs Manual (MBCM) plus supplementary guidance published as part of NZTA's Investment Decision Making Framework review.⁶⁰

Table 55: Demand and benefit modelling approach for indicative short-list optionassessment

Mode	Demand modelling approach	Benefit valuation approach
Public transport (bus)	Bus Priority Programme Model Changes in demand due to travel time improvements modelled using an elasticity	Travel time improvements modelled using a model of bus speeds on suburban corridors that was developed for the 2019 Bus Priority Programme, based on methods outlined in the Transport

⁶⁰ Available online at <u>https://www.nzta.govt.nz/resources/monetised-benefits-and-costs-manual/</u> and <u>https://www.nzta.govt.nz/planning-and-investment/planning/investment-decision-making-framework-review/</u>

	model based on guidance in Section 4 of the MBCM	Capacity and Quality of Service Manual User benefits are assessed using MBCM parameters
Cycling	Wellington Cycle Model Changes in demand due to facility improvements modelled using a discrete choice (nested logit) model of cycle mode and route choice	User benefits and health benefits arising from improved facilities and increased cycling activity are assessed using demand model outputs and MBCM parameters. Safety benefits could be valued using MBCM parameters and Crash Analysis System data (see below)
Walking	Active Modes Tool Current walking activity within the city centre is estimated by interpolating between counting sites; future activity projected based on land use change and increased PT volumes. Model does not capture demand uplift due to walking facility improvements	User benefits arising from improved facilities are assessed using NZTA interim guidance on the impact of urban amenity in pedestrian environments ⁶¹ User benefits from faster/more direct routes and safety enhancements are valued using MBCM parameters
General traffic	Traffic counts and adjustment from above models Current traffic count data used to estimate volumes. Mode shift from improvements to public transport, cycling, etc	Network-wide decongestion benefits from mode shift to PT assessed using simplified procedure approach for indicative analysis.

	is subtracted off existing	User benefits/disbenefits will be
	volumes	valued using MBCM parameters
Road safety	<i>Crash Analysis System</i> CAS data is used to identify existing fatal and injury crashes in the study area. Crashes are categorised according to the travel mode of injured people, the severity of injuries, and whether or not the crash occurred at or near an intersection.	Safety benefits have not been estimated at this stage due to uncertainty about the ability to deliver generalised reductions in specific locations.

2.1. Key benefit valuation assumptions

Valuation parameters and assumptions are drawn from NZTA's *Monetised Benefit and Cost Manual*. These assumptions include project period and discount rates (used to calculate the present value of whole-of-life costs and benefits) and parameters for valuing travel time benefits, active mode benefits, and crash cost reduction benefits.

The following table summarises some key assumptions and/or sources of assumptions.

Table 56: Standard valuation and benefit assumptions

Assumption	Value / source
Evaluation period	Start year: 2020. Project period: 40 years
Discount rate	Central: 4% Sensitivity test: 6%

^{61 &}lt;u>https://www.nzta.govt.nz/assets/planning-and-investment/docs/impact-on-urban-amenity-in-pedestrian-environments-march-2020.pdf</u>

Value of travel time savings	Equity value of time by trip purpose from MBCM Table A4.1(b) Trip purpose split for individual modes based on Household Travel Survey data Resulting value of travel time savings are summarised in Table 57
Walking and cycling health benefits	Per-kilometre benefit values and annual capped benefits per user drawn from the <i>Health and Active Modes Impacts</i> paper that updates current MBCM values ⁶²
Crash cost reduction benefits	Benefits for reduced fatal/injury/non-injury crashes based on MBCM values. Crash reduction factors based on <i>Crash Estimation</i> <i>Compendium</i> parameters – note that these benefits are not calculated for relative BCRs between options ⁶³
Footpath and pedestrian realm benefits	Benefit parameters for improved footpaths and pedestrian facilities are drawn from the <i>Impact on Urban Amenity in Pedestrian Environments</i> paper prepared for the MBCM review ⁶⁴

		non-work purposes, 5% work travel purposes
Cycling	\$13.69 / person- hour	Based on 2015-2017 HTS data for Wellington region indicating trip purpose shares of: 41% commuting to work/education, 50% other non-work purposes, 10% work travel purposes
Walking	\$12.71 / person- hour	Based on 2015-2017 HTS data for Wellington region indicating trip purpose shares of: 24% commuting to work/education, 69% other non-work purposes, 7% work travel purposes
Car (drivers + passengers	\$16.80 / vehicle- hour	Based on 2015-2017 Household Travel Survey (HTS) data for Wellington region indicating trip purpose shares of: 15% commuting to work/education, 78% other non-work purposes, 8% work travel purposes, and average vehicle occupancy of: 1.3 for commuting, 1.4 for other non- work purposes, and 1.1 or work travel purposes

Table 57: Average value of travel time savings by mode

Mode	Average VOT	Notes
Public transport	\$12.48 / person- hour	Based on 2015-2017 Household Travel Survey (HTS) data for Wellington region indicating trip purpose shares of: 47% commuting to work/education, 48% other

⁶² <u>https://www.nzta.govt.nz/assets/planning-and-investment/docs/health-and-active-modes-impacts-march-2020.pdf</u>

Notes: Based on VOT estimates by trip purpose from MBCM Table 15 (\$7.80/hr for commuting, 6.90/hr for other non-work purposes, and \$23.85/hr for work travel purposes in 2002 NZ dollars) updated to 2019 NZ dollars using the benefit update factor of 1.54 from MBCM Table A12.3.

Because underlying demand models and demand estimation procedures are generally based on a 2019/2020 base year, it is necessary to make assumptions about baseline growth in demand and benefits. For consistency with other planning assumptions, transport demands (and hence demands for individual modes) are expected to grow in line with Forecast.ID population growth assumptions plus a degree of underlying mode

⁶³ <u>https://www.nzta.govt.nz/assets/resources/economic-evaluation-manual/economic-evaluation-manual/docs/crash-risk-factors-guidelines-compendium.pdf</u>

⁶⁴ <u>https://www.nzta.govt.nz/assets/planning-and-investment/docs/impact-on-urban-amenity-in-pedestrian-environments-march-2020.pdf</u>

shift based on past observed trends. User benefits are expected to grow at a similar rate, with consideration of higher rates of benefit growth due to rising congestion. Lower and higher benefit growth rates are sensitivity tested.

2.2. Public transport demand and benefits

Public transport demands and benefits are modelled using an approach developed for the 2019 *Bus Priority Programme*. This model has three key elements:

- First, Greater Wellington's real-time information is analysed to identify average travel times on bus corridors, to identify delays relative to 'optimal' conditions, and to identify the causes of delay in different parts of bus corridors.
- Second, bus priority interventions are applied to bus corridors. These
 interventions reduce delays arising from specific causes for instance, bus
 priority lanes reduce delays due to general traffic but not delays due to signal
 timing or bus stop spacing.
- Third, an elasticity model is applied to predict changes in patronage for journeys through the bus network, based on modelled changes in journey times between origin and destination stops (including walk times to access stops). This elasticity model is based on parameters in MBCM Section 4.

Outputs are used to calculate changes in patronage and public transport user benefits. Demands and benefits are annualised using information on peak and all-day demands and peak and all-day bus delays, respectively. Mode shift from car to public transport is estimated by applying diversion rates from MBCM Section 4 to modelled bus patronage changes. This is used to estimate traffic reduction benefits such as emission reductions and reduced congestion delay for other road users.

Calculations and modelling assumptions are described in Appendix 2 to the Bus Priority Indicative Business Case, which is attached to this methodology note.

2.3. Cycling demand and benefits

Cycling demands and benefits are modelled using the Wellington Cycle Model, which was originally developed in 2014 to support the development of the Wellington cycling programme and which was recently updated and expanded to cover the entirety of Wellington City. This model has three elements:

- First, a base origin-destination trip matrix is defined based on 2013 Census commuting flow data.
- Second, a strategic cycling network is defined, including all routes that have been identified for potential cycle facilities, all main arterial roads (whether or not they are expected to receive cycle facilities), and key connectors to and between these corridors. Routes between all origins and destinations in the model are defined using this network.
- Third, a nested logit model is used to predict changes in cycle mode and route choice in response to changes to cycle facilities. Key parameters of this model are estimated based on a 2014 stated choice survey, and the model is calibrated against observed cycling mode share.

Outputs are used to calculate changes in cycling activity and cycling user benefits related to health benefits of active modes and improved quality of experience. Mode shift from car to cycling, which is used to estimate emission reduction benefits, is again estimated based on diversion rates in MBCM Appendix A14.⁶⁵

Calculations and modelling are described in a separate draft technical note, *Wellington Cycle Model update, November 2020*, which is attached to this methodology note. Several levels of cycle facility improvements were modelled, depending upon option specification.

2.4. Walking demand and benefits

Walking volumes are estimated using a mix of approaches. The *Active Modes Tool* developed in 2017 as an input to LGWM modelling is used to estimate walking volumes on primary corridors in the city centre and immediate fringe areas. Walking volume data is less available outside of the city centre, and hence public transport boardings and alightings on high frequency bus corridors are used as a (partial) indicator of walking volumes.

The *Active Modes Tool* estimates base year (2016) weekday walking flows by interpolating between pedestrian count sites, and projects future growth in walking flows based on underlying growth in public transport boardings / alightings and active mode trip generation from nearby land uses. Future year projections rely upon outputs from WTSM, the regional strategic transport model. Future projects reflect growth in walking

⁶⁵ Health benefit parameters already include an allowance for emission reductions, and hence estimated emission reductions are not added to total benefits.

activity due to land use change or new public transport stations but do not account for uplift due to improved walking amenity/accessibility. The *Active Modes Tool* technical note is attached to this methodology note.

Benefits for walking users are assessed using a spreadsheet-based approach. Two main streams of benefits are considered:

- Reduced walking journey times due to improvements to crossing facilities, including provision of new pedestrian facilities and changes to traffic signal timing to reduce pedestrian delay. These benefits are assessed using a simple average wait time formula.
- Quality of facility benefits arising from footpath amenity improvements like paving upgrades, street trees and plantings, shelter, lighting, etc. An indicative assessment is undertaken using guidance on the Impact *on Urban Amenity in Pedestrian Environments* recently published by NZTA.

Key assumptions for estimating the magnitude of these benefits are briefly described here.

2.4.1. Assumptions used to estimate walking user benefits

Walking user benefits are first calculated in terms of minutes of delay avoided (for interventions that reduce walking journey times) or minutes of willingness to walk further to access improved facilities (for quality of facility benefits). These benefits are then monetised using the average value of travel time savings parameter from Table 57.

For a given intervention, total benefits scale in line with user volumes. This means that interventions in high-volume locations are more likely to generate positive net benefits.

The following table summarises the approach used to estimate pedestrian benefits from five interventions that are expected to reduce walking journey times.

Table 58: Estimation of reduced walking journey time benefits

assumptions	Intervention	Summary of approach	Key parameters / assumptions
-------------	--------------	---------------------	---------------------------------

⁶⁶ https://www.nzta.govt.nz/assets/resources/pedestrian-planning-guide/docs/guidelines	-selection-
<u>of-pedestrian-facilities.pdf</u>	

New pedestrian and cyclist overbridge / underpass	 Calculate current average delay crossing road based on gap acceptance formula As overbridges / underpasses deliver unimpeded crossing opportunities, benefits are equal to average delay Benefits are assumed to apply to 50% of pedestrians using the street segment 	Values from Tables 3 and 4 in NZTA's <i>Guidelines for</i> <i>the Selection of Pedestrian</i> <i>Facilities</i> are used to estimate average pedestrian delay based on observed traffic volumes and road width. ⁶⁶
New midblock signalised crossing	 Calculate current average delay crossing road based on gap acceptance formula. Calculate average crossing delay using simple average delay formula for signalised intersections [Avg delay = Cycle time * (1-ped green time ratio)² / 2] 	Values from Tables 3 and 4 in NZTA's <i>Guidelines for</i> <i>the Selection of Pedestrian</i> <i>Facilities</i> are used to estimate average pedestrian delay based on observed traffic volumes and road width.
	 3. Calculate reductions in delay based on difference between current delay and signal delay 4. Benefits are assumed to apply to 50% of pedestrians using the street segment 	Pedestrian signal cycle time and green time ratios are based on the existing Wallace St pedestrian signal (cycle time = 114 seconds, pedestrian green time = 16 seconds)
New zebra crossing	 Calculate current average delay crossing road based on gap acceptance formula. Calculate average zebra crossing delay based on formula from 	Values from Tables 3 and 4 in NZTA's <i>Guidelines for</i> <i>the Selection of Pedestrian</i> <i>Facilities</i> are used to estimate average pedestrian delay based on

et's	GET (M)ellington Attachment 1 to Report	MOYING
------	--	--------

	 section B10 in the Australasian Pedestrian Facility Selection Tool, which calculates average delay based on vehicle flows [Avg delay = 0.311 + 0.004*Avg hourly vehicle flow, capped at 7 seconds¹⁶⁷ 3. Calculate reductions in delay based on difference between current delay and zebra delay 4. Benefits are assumed to apply to 50% of pedestrians using the street segment 	observed traffic volumes and road width.
Add missing pedestrian leg(s) to existing signalised intersection	 Adding missing pedestrian legs is assumed to reduce average delay per pedestrian by around 10 seconds Benefits are assumed to apply to 50% of pedestrians using the street segment 	Delay reduction benefits are assumed to be higher, on average, than for reduced cycle times as spreadsheet analysis of delay suggests that adding missing legs has large benefits for diagonal or multi-leg crossings ⁻⁶⁸
Increase pedestrian green time at existing signalised intersection	 Increasing pedestrian green time is assumed to reduce average delay per pedestrian by around 5 seconds Benefits are assumed to apply to 50% of pedestrians using the street segment 	Delay reduction estimate is based on Sidra modelling undertaken for selected city centre intersections, which indicates average walk time benefits in the range of 2 to 11 seconds from increasing pedestrian

	green time or reducing
	green time or reducing signal cycle length ^{.69}

The following table summarises the approach used to estimate pedestrian benefits from three interventions that are expected to improve the quality of the walking experience.

Table 59: Estimation of quality of facility benefits

Intervention	Summary of approach	Key parameters / assumptions
Shared space	 Willingness to pay for improved facility (denoted in willingness to walk additional time to obtain an improved facility) is estimated using the method outlined in NZTA's <i>Impact on Urban Amenity</i> <i>in Pedestrian Environments</i> guidance Time spent walking on new facility calculated based on the assumption that the average user walks half the distance of the road 	A willingness to pay value of 0.81 (implying willingness to walk an additional 0.81 minutes per minute walked in order to access the improved facility) is derived by summing together values for increased footpath width in uncrowded conditions (0.14), half of the value of improved pavement quality (0.04), dropped kerbs (0.02),

67 <u>https://austroads.com.au/___data/assets/pdf_file/0028/104968/AP-R472A-18_User_Guide_Pedestrian_Facility_Selection_Tool.pdf</u>

⁶⁹ See Tables 1-3 in the Executive Summary of *Let's Get Wellington Moving: Central City Pedestrian Improvements Quick Wins Investment Proposal, October 2020.*

⁶⁸ See MRCagney, 2017. *Measuring Pedestrian Delay*. A report for Auckland Council.

	segment and that they walk at an average speed of 4.5 km/hr 3. Benefits per user obtained by multiplying together results from the above two steps	lighting/CCTV (0.06), street trees/plantings (0.2), seating (0.01), a 2000- vehicle reduction in AADT (0.1), and an 8km/hr reduction in vehicle speed (0.24).
Widened footpath	 Willingness to pay for improved facility (denoted in willingness to walk additional time to obtain an improved facility) is estimated using the method outlined in NZTA's <i>Impact on Urban Amenity</i> <i>in Pedestrian Environments</i> guidance Time spent walking on new facility calculated based on the assumption that the average user walks half the distance of the road segment and that they walk at an average speed of 4.5 km/hr Benefits per user obtained by multiplying together results from the above two steps 	A willingness to pay value of 0.14 (implying willingness to walk an additional 0.14 minutes per minute walked in order to access a wider/more comfortable footpath) is based on the value for a 1 metre footpath widening in crowded conditions.
Improvements to bus stop walking access	 Level of intervention is coded from 1 (little change) to 5 (dropped kerbs on all approaches) Willingness to pay for improved facility (denoted in willingness to walk additional time to obtain an improved facility) is estimated using the method outlined in NZTA's <i>Impact on Urban Amenity</i> 	Willingness to pay values of between 0.005 and 0.02 are assigned to different levels of intervention. The maximum value is based on the benefit parameter for dropped kerbs (0.02).

<i>in Pedestrian Environments</i> guidance	
3. Time spent walking on new facility calculated based on the assumption that the average person boarding / alighting at the bus stop walks around 200m and that they walk at an average speed of 4.5 km/hr	
4. Benefits per user obtained by multiplying together results from the above two steps	

2.5. General traffic demand and benefits

Current general traffic volumes are estimated based on traffic count data matched to RAMM road segments. The mode shift impact of City Streets options will be captured in bus and cycling modelling described above.

Mode shift is likely to lead to some decongestion benefits, while extensive reallocation of road space may lead to disbenefits for general traffic if it is not sufficiently mitigated by other changes in travel demand. In future stages of City Streets traffic modelling with Aimsun should be undertaken to assess these impacts.

These issues are addressed as follows:

- First, undertake an indicative assessment of public transport, cycling, and walking benefits, with high-level/indicative assessment of traffic impacts, at the short-list option stage. This results in relative BCRs.
- Second, use Aimsun traffic modelling as a check on the traffic impacts of a 'preferred' option or option variant. This would entail calculating benefits/disbenefits to general traffic based on Aimsun model outputs and adding these to benefits for users of other transport modes.

The disadvantage of using Aimsun modelling is that it models traffic conditions based on a fixed vehicle trip matrix. This means that it is likely to over-estimate traffic disbenefits by neglecting the potential for users to respond by changing modes, time of travel,

choice of destination, or choice about whether to travel. As a result, two modifications to the base Aimsun approach are suggested:

- First, for the preferred option scenario, adjust the trip matrix based on modelled mode shift to public transport and cycling. This will ensure consistency between mode-specific models and Aimsum modelling.
- Second, after running Aimsun over the preferred option, adjust the trip matrix using an elasticity-based approach to account for other travel demand responses to changes in car travel times. This is proposed as a sensitivity test in the event that large-scale changes to the road network result in significant traffic disbenefits. The aim of this sensitivity test is to account for the common experience of 'disappearing traffic' in response to road space reallocation or road closures. A technical note on this topic ('Adjusting Aimsun demand matrices in response to road capacity changes') is attached.

2.6. Crash reduction benefits

In future phases of City Streets crash reduction benefits from safety-related interventions, such as intersection upgrades, should be estimated using data from NZTA's *Crash Analysis System*, parameters and assumptions from the MBCM, and crash risk reduction assumptions from the *Crash Estimation Compendium*.

Crash reduction benefits have not been calculated for City Streets indicative options, although it is reasonable to expect some of the toolbox interventions to result in safety improvements. There are two reasons for this.

First, a realistic analysis of crash reduction benefits would require a detailed analysis of the circumstances of crashes. For instance, improvements to an intersection may not result in significant benefits if most crashes occur when vehicles are turning in to driveways.

Second, experience with other projects shows that design details can have a significant impact on the magnitude and even direction of crash reduction impacts. Because City Streets indicative options are being evaluated based on high-level concept interventions it is difficult to accurately calculate impacts.

3. Estimating indicative costs

A high-level cost estimation approach was used as an input to indicative cost benefit analysis. This approach is based on unit cost estimates for individual interventions included in the intervention toolbox, plus unit costs for project overhead costs such as detailed design, communications and engagement, and traffic resolutions. Allowances for other location-specific costs, such as property acquisition where it is needed to address specific issues, are also included.

This approach entails:

- Identifying the quantity (number, distance, etc) of each intervention included in each short-list option.
- Multiplying quantities by unit cost rates to obtain total estimated costs.
- Adding project overhead costs.

Following this process, the SSBC and project overhead costs were revised based on the latest experiences relating to Golden Mile and TQHR leading to increases for some projects.

The following sub-sections summarise the basic approach and initial unit cost estimates used prior to moderation. In general, unit cost rates were drawn from recent projects undertaken in Wellington, with an allowance for recent cost inflation where relevant.

3.1. Project overhead costs

The *Bus Priority Indicative Business Case* provides estimates of corridor-level overhead costs. These estimates are summarised in the following table. As these costs scale according to length of corridor treated or number of projects, they can easily be applied across the programme.

Table 60: Project overhead cost estimates

Cost item	Units	Cost (\$)				
		Low	Mid-point	High		
Communications and engagement	Annual per project	1,000,000	1,500,000	2,000,000		
Traffic resolutions	Kilometre treated	15,000	17,500	20,000		

Cost item	Units	Cost (\$)				
Draft engineering design	Kilometre treated	100,000	150,000	200,000		
Detailed engineering design	Kilometre treated	100,000	150,000	200,000		
Contract management	Kilometre treated	50,000	75,000	100,000		

Appendix I: Sensitivity test parameters

Parameter	Baseline	Lower Bound	Upper Bound
Valuation Assumptions			
Discount Rate	4%	6%	4%
Evaluation Period (years)	40	40	40
Construction start year	2021	2021	2021
Start year for benefits	2024	2024	2024
End year for benefits	2100	2100	2100
Cross-modal assumptions			
Construction cost sensitivity	P50	P95	P50
Demand growth assumptions	Central	Low	High
Cycling benefit assumptions			
Cycling user benefit calculation approach	Logsum	EEM Params	Logsum
Diversion rate from car to cycling (for GHG impacts)	Central	Low	High
Calibration of opt out utility	Exactly	Exactly	Exactly
Public transport benefit assumption	ions		
Growth in PT delay without intervention	Central	Low	High

Parameter	Baseline	Lower Bound	Upper Bound
Elasticity of PT demand wrt travel time	Central	Low	High
Diversion rate from car to PT	Central	Low	High
Public transport VOT	Central	Central	High
Road traffic reduction benefit parameter	Central	Low	Central
Annualisation ration for PT user benefits	Inbound + outbound 8	Inbound + outbound 8	Inbound + outbound 8
Include weekend benefits in annualisation?	False	False	False
Assumptions about unquantified	impacts		
Include proxy for unquantified benefits?	True	True	True
Reliability benefits as % of PT user benefits	38%	38%	38%
Traffic delay as % of decongestion benefits	-50%	-50%	-50%
Traffic delay as % of walking delay reduction benefits	-50%	-50%	-50%

Appendix J: Risk Register

Risk Description (include whether this is a threat or an opportunity)	Risk Cause(s)	Risk Consequence(s)	Current Risk Likelihood	Current Risk Consequence	Consequence Category	Current Controlled Risk Level	Planned Risk Trmt Actions	Residual (Target) Risk Likelihood	Residual (Target) Risk Consequence	Residual (Target) Risk Level
The potential for CS to be impacted by and impact on historic heritage and archaeological values	No historic heritage or archaeological values work considered in developing the IBC as risk and relevance to developing the programme is considered low.	Potential to delay CS projects or significantly impact scope and cost through need for consents or impacts on statutory archaeological and RMA listed historic heritage requirements.	Possible	Moderate	Environmental	Medium	LGWM are undertaking a programme level Heritage Landscape Assessment. This will be referenced in subsequent SSBCs/SSBC-lites and requirement to consider historic heritage and archaeological values will be included in the scope.	Unlikely	Moderate	Medium
CS outcomes misaligned due to changes in other components of the LGWM programme not being realised.	Other LGWM components are in the process of being developed and scope uncertainty remains	CS elements may not optimally integrate with the City or LGWM programme.	Likely	Severe	Delivery	Critical	The CS projects have been staged around key decisions of other LGWM components such as MRT route and mode decisions, also programme reviews are proposed to revisit the optimal package at key milestones	Possible	Moderate	Medium
Partners/stakeholders desired levels of service from CS components may exceed what was envisaged by the IBC and allowed for in the indicative budget.	Partner and stakeholder expectations of "Gold Standard" quality for all investments raised as a result of other high-profile projects such as Golden Mile.	Undermined social licence if expectations not managed and/or project costs escalate in response to expanded scope either reducing the programme overall or increasing total programme costs	Likely	Moderate	Cost	High	 Ongoing communication with stakeholders and partners on the key assumptions underlining the CS package and risks of scope creep The scope of the SSBC/SSBC-lite will be transparent about the LoS assumptions underpinning the IBC and expectations around moderate solutions up front. 	Possible	Moderate	Medium

Upon commencing SSBCs/SSBC-lite the envisaged improvements cannot be fitted into the road reserve.	No physical design has been undertaken as part of the prioritising of corridors for the IBC. Indicative assumptions about modal improvements have been made which might not be feasible when investigated at the next phase	There may need to be level of service compromises or modal priority decisions taken which could delay projects or reduce the outcomes realised.	Likely	Moderate	Delivery	High	 The project will be guided by the Network Operating Framework in resolving modal priorities The SSBC scoping process will aim to consider this risk in setting out its requirements. 	Likely	Minor	Medium
Pursuing Tranche 1 other components of the CS/LGWM programme become compromised.	Individual CS projects do not check-in with the wider package or programme to ensure alignment and overall programme optimisation	Outcomes are undermined and quality of downstream projects is compromised	Likely	Moderate	Delivery	High	1. CS taken forward as a package with professional services procured in such a way that a package and best for LGWM programme approach is a requirement.	Unlikely	Moderate	Medium
CS activities are not integrated with WCC/Utility providers improvements	The package does not engage with infrastructure partners to understand their improvement programmes and outcomes to seek win-win value opportunities	Potential rework and additional cost in remedying projects or integrating projects at a late stage with suboptimal outcomes	Likely	Severe	Delivery	Critical	LGWM and CS liaise closely with stakeholders and partners on respective plans as projects progress.	Possible	Moderate	Medium

Expectations of CS activities with respect to supporting climate change aspirations cannot be met	Climate change has become a significant priority for partners with ambitious targets. Whilst CS can contribute to those targets it is unlikely to achieve them on its own given the wider objectives of the package.	Undermined social licence if expectations not managed and/or project costs escalate in response to expanded climate change response either reducing the programme overall or increasing total programme costs	Possible	Moderate	Delivery	Medium	 Establish climate change goals as a priority for the package early in the SSBC process with clear documentation of the climate change benefits of the package required to support stakeholder/partner engagement. Programme to establish/provide environmental sustainability guidelines to support the CS package Climate change measures considered early in the optioneering process to avoid costly rework 	Unlikely	Minor	Low
Project partners confidence in delivery of CS is undermined through slow delivery	Partners perceive delivery to date as suboptimal and have expectations of this improving following a programme review	If partners continue to perceive delivery as slow or poorly aligned to their organisational goals, they could choose to invest in their own activities undermining collaborative transport system planning delivering sub-optimal outcomes for Wellington.	Likely	Moderate	Stakeholders	High	Establish a realistically resourced CS package team and baseline programme and engage with partners on a regular basis on progress.	Likely	Moderate	High
Partners/stakeholder desired levels of investment in non- transport related outcomes compromise the programme outcomes	There is ongoing misalignment between partners on the role of place-making and the level of investment in placemaking the LGWM should make. This was unresolved in the IBC.	Undermined social licence if expectations not managed and/or project costs escalate in response to place making expectations either reducing the programme overall or increasing total programme costs	Likely	Severe	Cost	Critical	SSBCs will identify and monetise the place-making costs and benefits so that these can be appropriately apportioned and used as a basis for evidence- based discussions between partners.	Likely	Moderate	High
Poor social licence for the programme compromises programme delivery	Public confidence in the CS package is undermined due to quality expectations set by Golden Mile and/or	Projects are delayed by engagement or are unable to progress due to lack of buy-in to the solutions by the public and stakeholders.	Likely	Severe	Public/ Media	Critical	Comms and engagement strategy to be developed to proactively engage with the public on the purpose of CS and its outcomes.	Possible	Severe	High

	wider engagement experiences of the public.									
Changes in partner affordability compromise programme delivery	Partner budgets are constrained and there are significant pressures on partners affordability of new infrastructure	There is limited scope for additional funding meaning scope of CS projects needs to be contained or programme reduced if cost escalation emerges.	Unlikely	Severe	Cost	Medium	Limited scope to influence partners affordability	Unlikely	Severe	Medium
Slower than desired delivery of the CS programme due to LGWM/industry resource constraints.	There are existing pressures on the industry making it difficult to compete on attracting the right level of capability and skill both within the programme and professional services market	Under resourced programme or consultancy team could lead to delay, churn and rework undermining the cs package and partner/stakeholder confidence.	Likely	Moderate	Delivery	High	 Commence LGWM project team recruitment early Develop a procurement strategy which takes cognisance of market pressures amongst other considerations to minimise the risk 	Possible	Moderate	Medium
Consultation on the CS programme (alongside LGWM consultation) could be confusing and inconsistent to stakeholders and the public	With a number of projects ongoing both in the LGWM programme and across partner organisations the public/stakeholders could become confused reducing the impact of key messaging	CS projects could be delayed due to the need to re-engage with the public/stakeholders to ensure messaging gets through and appropriate levels of involvement have occurred.	Likely	Moderate	Public/ Media	High	Comms and engagement strategy developed and managed centrally from within the LGWM programme to ensure optimal coverage and penetration of LGWM messaging and consistency with partner programmes.	Possible	Moderate	Medium
Risk that CS improvements are not futureproofed for future PT network changes and growth	SSBCs lack a future focus and are heavily biased towards infrastructure solutions	CS projects lack futureproofing and are not adaptable to growth or change in PT network services reducing the overall long-term benefits of the CS package.	Likely	Moderate	Delivery	High	 The SSBCs have a requirement to consider the full range of interventions and include GWRC as a partner in terms of input in relation to future patronage growth and service adaptation. A specific project is included in the CS package to support GWRC PT service analysis and advice to CS 	Unlikely	Moderate	Medium

Targeted improvements undermine the overall outcomes envisaged by the CS package	Incremental improvements through targeted improvements ignores wider outcomes of the CS package which then cannot be attained as they offer poor value for money when pursued in isolation	The overall outcomes envisaged from the CS package are not attained	Possible	Moderate	Delivery	Medium	Targeted improvements package scoping to be clear on the types of intervention and eligibility criteria for inclusion in the package.	Unlikely	Minor	Low
Indicative solutions in IBC significantly under scoped when investigated during SSBC phase meaning IBC costs unrealistic	The IBC has used a desk based 'sample' solution approach rather than detailed investigation of solutions with 'typical' unit costs provided by WCC.	The cost of projects is significantly underestimated leading to reduced scope or increased cost of the CS package.	Possible	Severe	Delivery	High	1. Significant contingency allowed for at the project and package level within the IBC	Possible	Moderate	Medium
Delivery and funding of CS activities beyond 3-year commitments not agreed, delaying delivery of outcomes	Partner discussions on financial share and affordability are ongoing.	Delay in commissioning subsequent phases of CS projects	Possible	Moderate	Delivery	Medium	LGWM project office to continue discussions with partners to resolve long term funding contributions approach	Unlikely	Moderate	Medium
Outcomes delivered by Tranche 1 or WCC early projects don't meet public/stakeholder expectations undermining support for later components of the CS programme [Same as Risk 3?]	Partner and stakeholder expectations of "Gold Standard" quality for all investments raised as a result of other high-profile projects such as Golden Mile.	Undermined social licence if expectations not managed and/or project costs escalate in response to expanded scope. This could lead to either increased scope and cost to deliver to expectations or projects not commencing	Likely	Severe	Delivery	Critical	1. Ongoing communication with stakeholders/partners and public on the key assumptions and outcomes underlining the CS package	Possible	Severe	High
Changing partner priorities impact the timing and sequencing of delivery, undermining delivery of the optimal programme	Issues of the day become a focus for partners due to stakeholder/public pressures	Regular re-sequencing of the CS package could undermine the optimal delivery of the programme costing money and time and reducing package outcomes	Likely	Moderate	Delivery	High	1. Gain support from partners early on the programme and seek to 'lock it in'?????	Possible	Moderate	Medium

SSBC/SSBC-lite take longer than anticipated delaying delivery	Projects become over scoped, or scope changes occur mid-business case or supplier capability is insufficient for the job at hand	Delay and/or cost and/or sub-optimal business cases with additional risk passed to the pre- implementation phases	Likely	Moderate	Delivery	High	 Well scoped SSBCs with buy in of partners locked in at the start Clear change processes defined within the LGWM programme Procurement focussed on quality of consulting teams 	Possible	Minor	Medium
CS enhancements need to go through a traffic resolutions process which is outside LGWM control. If council disagree with the proposal, they could not approve the changes	LGWM is not accountable for the traffic resolutions process. If WCC do not like CS projects they can use the resolutions process to stop implementation.	CS projects are not implemented or implemented in the form proposed by LGWM	Possible	Severe	Delivery	High	Early and regular engagement with partners on the scope of CS projects	Unlikely	Moderate	Medium
Partners cannot agree SSBC/SSBC- lite scope delaying commencement of the next phase	Misalignment between partners on necessary scope items versus nice to have of relevance to completing the business cases leads to protracted scoping process	Delay and cost implications for SSBC and SSBC-lite.	Possible	Moderate	Delivery	Medium	Scoping process clearly developed with LGWM programme scope approvals/escalation processes defined	Possible	Minor	Medium
Where targeted road widening required there could be potential consenting risks	The IBC has used a desk based 'sample' solution based on improvements being within the road reserve. Optimal outcomes could require widening with potential earth works or retaining walls and associated environmental approvals.	Delay and additional cost to projects	Possible	Moderate	Delivery	Medium	Project and package contingency allowed for.	Possible	Minor	Medium

An inconsistent benefits realisation framework for CS makes it difficult to consistently measure and articulate the outcomes delivered by the package.	The benefits framework for the LGWM programme has not been established to provide a consistent basis against which to measure the benefits delivered by the programme elements	The outcomes delivered by CS cannot be told in a consistent manner and/or resources not made available for the appropriate monitoring due to lack of an overarching benefits realisation plan for the programme.	Likely	Moderate	Legal/ Compliance	High	Programme to establish an overarching benefits realisation framework and costed and funded monitoring programme to demonstrate the outcomes developed by the LGWM programme and its components.	Unlikely	Moderate	Medium
The outcomes envisaged from the CS package care not realised because complementary behavioural change components of LGWM are not delivered	Behavioural change activities are necessary to complement CS to achieve the desired outcomes	Mode-shift goals of the CS programme are not achieved.	Possible	Moderate	Delivery	Medium	1. Partner commitment and funding to a demand management package confirmed.????	Unlikely	Minor	Low
CS outcomes for the Central City will be dependent upon the effectiveness of Golden Mile improvements	The CS central city improvements are closely integrated with Golden Mile and MRT from a transport system perspective	The outcomes of CS, Golden Mile and MRT are undermined through lack of integration and best- for-transport-system perspective being applied to synergistic activities	Possible	Severe	Delivery	High	Overarching LGWM programme integration team to have oversight of LGWM components and provide guidance and direction as necessary	Possible	Moderate	Medium
Opportunity to work with other partners (e.g., Wellington Water) to seek co- funding where appropriate	Across the city and utility partners there is significant works planed over the duration of the City Streets package	Significant potential for mutual cost savings and disruption minimisation to the public.	Likely	Moderate	Delivery	High	Programme to close liaise with partners to identify opportunities to combine programmes and negotiate appropriate cost shares where opportunities arise.	Possible	Minor	Medium

Project	Next Phase	Phase Estimate (\$k)	Construction Estimate (\$m)	High level scope		
	Tranche 1 – In	nmediate Start	with partner de	sire to commit to construction start within 3 Years		
Johnsonville	Ngauranga PT cycling enhancements, Walking to in		Bus route improvements between the Johnsonville Bus Hub and Hutt Road with associated cycling enhancements, Walking to improve bus stop access and safety improvements.			
Ngauranga Gorge Targeted Improvements	BPAP Targeted 75 0.75 p.a. Improvements SSBC lite		0.75 p.a.	 Take the Bus Priority Action Plan recommendations regarding Bus Stop improvements and develop this into a cohesive programme with identified costs and benefits with a focus on commencing in Karori. The SSBC lite will: confirm which stops to rationalise (ensuring best strategic outcome is achieved and integration with wider LGWM and WCC/GW programmes has been considered) identify options to be assessed at each stop – will include bus stop relocation/rationalisation, bus stop enhancements (including geometry or custome experience improvements), pedestrian access enhancements Indicative costs and benefits of the programme Costed delivery programme SSBC lite to provide the basis of funding for pre-imp (define the final solutions) and implementation of the costed programme. 		
	Other Targeted Improvements SSBC lite	75	3.0 p.a.	 Identifies a package of transport system targeted improvements which improve PT, Walking/Cycling, amenity and safety. The activities forming the package should be low cost, easily implementable with benefits known to outweigh costs. Activities to be considered include, amongst others: timing changes at traffic lights Bus phase / queue jumps at traffic lights Hours of operation of clearways/bus lanes Minor pedestrian improvements Minor safety at high-risk intersections Cycle parking The SSBC lite will: confirm the range of measures forming the targeted programme (ensuring best strategic outcomes are achieved and integration with wider LGWM and WCC/GW programmes has been considered) 		

Attachment 2 to Report 21.346

Project	Next Phase	Phase Estimate (\$k)	Construction Estimate (\$m)	High level scope
				 identify the scale of opportunity for improvement for each activity type and demonstrate the confirmed benefits associated with an activity type, setting out the necessary conditions for those benefits to be guaranteed to be realised provide indicative pre-implementation and and implementation costs for each activity type provide a 3, 6 and 10 year recommended programme of activity types taking into consideration: partners and sectors capacity to deliver activity type benefits and benefit realisation risk wider integration with City Streets, LGWM and WCC programmes SSBC lite will provide the basis of a funding application for pre-imp (define the final location and solution) and implementation of the costed targeted programme.
City to Karori Tunnel	Bowen Street SSBC	250	9.3	PT, walking and cycling improvements along Bowen Street to align with WCC Kerb and Channel renewals scheduled for 2022.
			Tranche 1 – SS	BC Immediate Start
Taranaki St to John St	Taranaki St to John St SSBC	750	16.7	 Identify PT and cycling enhancements to include: Bus stop improvements Walking improvements to improve access to bus stops Targeted PT, Walking and Cycling improvements at key intersections
Willis/Victoria Walking/Cycling Connection Ghuznee Walking/Cycling Connection Dixon Walking/Cycling Connection	South-West CBD Improvements SSBC	1,200	22.4	Provide a network of safety PT, walking, cycling and place improvements in the South-West CBD. Taking a network approach and using WCC's network hierarchy, identify the most appropriate user priorities and correlating corridor treatments to provide appropriate levels of service

Attachment 2 to Report 21.346

Project	Next Phase	Phase Estimate (\$k)	Construction Estimate (\$m)	High level scope
City to Kilbirnie (via Hataitai)	Shelly Bay Road to Troy St PT Improvements SSBC	250	2.4	Low impact bus priority measures city bound between Shelly Bay Road and Troy Street
Bus network & operational Improvements	A specialist contract covering analysis and assessment of bus network and operational improvements as inputs into Tranche 1 SSBCs	500	-	This is a complementary activity to the programme of SSBCs to be owned and scoped by Greater Wellington in support of any bus planning activities that GW may require to undertake to inform the SSBC's. Bus network and operational expertise is a specialist service best sat outside of our traditional multidisciplinary consultants. All CS SSBC's should, as part of the options analysis process, consider network and operational improvements as well as engineering enhancements. Engineering enhancements could also have unconsidered knock- on consequences for the PT network and operations. This support contract provides enhances GW's work in this area as part of necessary inputs into the Tranche 1 SSBCs.
Quays Route (including second PT spine) Featherston Walking/Cycling Connection	Progress Feasibility testing of the Northern CBD Network Operating Plan	250	-	 LGWM has been developing the MRT and Golden Mile as separate projects and City Streets identifies Featherston Street as a key walking and cycling connection also. WCC has developed a Network Operating Hierarchy for the Northern CBD however, there has not been any network testing of the hierarchy in practice. This commission aims to: Model the network operating hierarchy with current LGWM findings to understand how the network operates. Identifying any challenges and proposing modal solutions to address these. Identify at a high level any engineering constraints on achieving the network hierarchy/LGWM outcomes proposing alternatives and options to achieve a balanced transport system
		Tranche 1 – Cor	nditional on for	m and route of MRT being confirmed
Basin to Newtown Kent/Cambridge and Basin Taranaki	South Central SSBC	1,500	44.5	PT, walking and cycling improvements on the north end of Taranaki St, Kent/Cambridge and Adelaide and Riddiford Street. Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode.

Attachment 2 to Report 21.346

Project	Next Phase	Phase Estimate (\$k)	Construction Estimate (\$m)	High level scope	
Miramar Town Centre City to Kilbirnie (via Hataitai)	City to Miramar Town Centre SSBC	1,000	13	 PT, walking and cycling improvements between Kent/Cambridge and Miramar town centre with a focus on: City to Kilbirnie: Elizabeth St, Brougham St, Pirie St, Hataitai Bus Tunnel, Waitoa Rd, Moxham Ave, Kupe St/Hamilton Rd and Kilbirne Crescent Miramar Town Centre: Miramar Ave between Shelly Bay Road and Park Rd/Hobart St. Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode. 	
Newtown to Berhampore	Newtown to Berhampore SSBC	600	26.3	Includes the bus route from Newtown town centre to Island Bay including Rintoul St, Luxfor St and Adelaide Road between Luxford St and Dee St. Improvements to include PT and cycling enhancements, walking improvements to improve bus stop access, safety & operational improvements at key intersections. Scale of improvements to align to WCC network operating hierarchy and be consistent with the confirmed MRT route and mode.	
Quays Route (including second PT spine)		-	-	Scope to be incorporated into MRT following outcome of mode/route confirmation	
Featherston Walking/Cycling Connection	SSBC	1,500	13.7	 Scope to be informed by the WCC network operating hierarchy, confirmed MRT route and mode, Golden Mile investigations and City Streets Network Operating Hierarchy work indertaken as part of Tranche 1. Currently envisaged to include: cycling and walking enhancements along Featherston street between Mulgrave Street and Hunter Street walking improvements for pedestrians crossing Featherston St. safety improvements at key intersections Scope excludes side connections linking the Golden Mile to the waterfront which are expected to be taken forward by either the Golden Mile or MRT projects. 	

Project	Next Phase	Phase Estimate (\$k)	Construction Estimate (\$m)	High level scope
	Tranche 2 – Subject	to future fundi	ng approvals co	onsidering progress on Tranche 1 and programme review
The Terrace	Terrace SSBC	750	22.2	Includes consideration of bus, cycling and walking improvements including pedestrian crossing improvements and safety improvements at key intersections. Geographic scope covers the Terrace between Bowen Street and Ghuznee Street, and Ghuznee Street between The Terrace and Willis Street.
Karori Tunnel to Karori	Karori Tunnel to Karori SSBC	1,200	37.6	 Includes the bus route from Karori Tunnel to the Karori town centre (Chaytor Street and Karori Road between Chaytor Street and Chamberlain Road). To include the long-term future options for the Tunnel although improvements beyond operational enhancements are presently outside the scope of activities to be delivered by City Streets. Identified improvements include: PT and cycling enhancements along the route Walking improvements to improve bus stop access Safety improvements at key intersections
Vivian Walking/Cycling Connection	Vivian/Tory Precinct SSBC	750	4.9	 Geographic scope includes Vivian Street between Taranaki Street and Kent / Cambridge Terrace, and Tory Street between between Vivian Street and Courtenay Place and includes consideration of connections to Jessie Street, College Street, Lorne Street, and Tennyson Street. The SSBC purpose is to take a network approach and, by using WCC's network hierarchy, identify the most appropriate user priorities and correlating corridor treatments to provide appropriate levels of service and provide a safe and connected east-west cycling and walking network. The project builds from the earlier Ghuznee and Dixon walking / cycling connections to provide a connected network. Improvements include: Cycling and walking enhancements along the route Safety improvements at key intersections Amenity improvements
City to Karori Tunnel	Bowen Street to Karori Tunnel SSBC	300	39.3	PT, walking and cycling improvements from Tinakori Road at Bowan Street, along Glenmore Street to Karori Tunnel.

Transport Committee 9 September 2021 Report 21.361

For Decision

ADOPTION OF METLINK ACCESSIBILITY CHARTER

Te take mō te pūrongo Purpose

1. To formally adopt the Metlink Accessibility Charter and inform the Transport Committee on the process to develop the associated Accessibility Action Plan.

He tūtohu Recommendations

That the Transport Committee:

- 1. Adopts the Metlink Accessibility Charter 2021-2024 (Attachment 1).
- 2. **Agrees** that officers arrange a formal stakeholder launch event for the Charter once COVID-19 restrictions permit.
- 3. Notes the Accessibility Action Plan engagement brief developed by officers (Attachment 2).
- 4. **Notes** that the Metlink Accessibility Charter, and associated Accessibility Action Plan, are agreed activities from the Regional Public Transport Plan 2021-31 adopted by Council on 29 June 2021.
- 5. **Notes** that the programme of work developed under the Metlink Accessibility Charter will lead to a consolidated funding bid for accessibility-related infrastructure and service enhancements to the 2024 Long Term Plan and Regional Land Transport Plan.
- 6. **Notes** that the scope of the Accessibility Charter is 'disability' defined in New Zealand by the Ministry of Health as, "any self-perceived limitation in activity resulting from a long-term condition or health problem lasting or expected to last 6 months or more and not completely eliminated by an assistive device." This includes physical, intellectual, psychological, sensory and neurological disabilities.
- 7. Notes that engagement with all key stakeholders, including disabled people and sector representatives, Metlink staff, health sector agencies including District Health Boards (DHBs), members of the Public Transport Advisory Group (PTAG), and advocacy groups like the Poneke Collective, will be ongoing through to 2024 for development of the Accessibility Action Plan.
- 8. **Notes** that te reo and New Zealand Sign Language versions of the Accessibility Charter will be developed for the formal launch.

Te horopaki Context

- 2. Ensuring the accessibility of public transport for disabled persons is a key focus of central and local government agencies, non-government agencies (NGOs), and community advocacy groups nationally and internationally.
- 3. In 2018, New Zealand ratified the United Nations Convention on the Rights of Persons with Disabilities. *Article 9: Accessibility*, of the Convention states: "To enable persons with disabilities to live independently and participate fully in all aspects of life, States Parties shall take appropriate measures to ensure to persons with disabilities access, on an equal basis with others, to...transportation".
- 4. Nationally, *Outcome 5: Accessibility* of the Office for Disability Issues' New Zealand Disability Strategy 2016-2026 sets out a future state for disabled persons where, "We feel safe taking public transport to get around and are treated well when we do so. Our needs are also appropriately considered when planning for new transport services...For those of us who need it, there is access to specific transport options that are affordable, readily available and easy to use".
- 5. At regional government level, Auckland Transport has provided leadership on public transport accessibility planning, with their Auckland Transport Disability Policy (2013) leading to adoption of a Disability Operational Action Plan in 2016 and the current Accessibility Action Plan in December 2020. These policy positions have made accessible services and infrastructure a key focus area for Auckland.
- 6. Te Mahere Waka Whenua Tūmatanui o te Rohe o Pōneke The Wellington Regional Public Transport Plan (RPTP) was adopted by Council on 29 June 2021. Throughout the public engagement and consultation process that led to the RPTP's adoption, accessibility was a key focus area. While disability stakeholders acknowledged the considerable work done to date by Metlink, particularly around public transport vehicle accessibility, ongoing perceptions expressed from that community are of Metlink taking an ad-hoc, un-prioritised approach to public transport service and infrastructure accessibility.
- 7. In response to our community engagement and taking inspiration and guidance from Auckland Transport's national leadership on public transport accessibility planning, officers developed an initial policy framework and key actions for inclusion in the RPTP.
- 8. The RPTP states "Metlink will work with the accessibility community, stakeholders and customers into from 2021 to 2023 to develop an Accessibility Charter and associated Accessibility Action Plan to identify priorities for improving accessibility across the network. Fundable actions from the Accessibility Action Plan will be incorporated into the 2024 Regional Land Transport Plan and Greater Wellington Long Term Plan" (Section 5.9 pg.77).
- 9. On 5 August 2021, officers workshopped the draft Accessibility Charter and proposed engagement process to develop an Accessibility Action Plan with the Transport Committee. Officers committed to bring the Accessibility Charter and associated planning tools to the Committee for formal adoption, with the aim of developing a

single, coherent package of accessibility projects for action in the current triennium, and for funding consideration for the 2024 triennium.

10. A programme of work associated with the increased provision of wheelchair accessible vehicles in Porirua and Waikanae/Ōtaki under He Ratonga Tekehī Total Mobility was workshopped with Council on 3 June 2021. This programme will now be continued under the Accessibility Action Plan umbrella.

Te tātaritanga Analysis

- 11. The Accessibility Charter 2021-2024 has been developed in response to a consistent comment from stakeholders from the accessibility community that a move to a more coordinated and prioritised approach should start by Metlink signalling a stronger commitment to accessibility at a policy level.
- 12. The Accessibility Charter has been developed using a co-design approach, using feedback and input from disabled users and advocates, including disability representatives from the Council's Public Transport Advisory Group. Officers also worked with a small group of accessibility stakeholders to guide us on the best approach for developing an action plan to improve accessibility. Adoption of the Accessibility Charter by Transport Committee will formally initiate the development of the Accessibility Action Plan.
- 13. While the scope is disability, solutions to improve accessibility will not only benefit people with disabilities but also the wider community. 'Disability' is defined in New Zealand by the Ministry of Health as "any self-perceived limitation in activity resulting from a long-term condition or health problem lasting or expected to last 6 months or more and not completely eliminated by an assistive device." This includes physical, intellectual, psychological, sensory, and neurological disabilities.
- 14. The Accessibility Charter provides a pathway to achieving Metlink's commitments to increase accessibility for people with disabilities to our public transport, adopting the Vision, "All parts of the Metlink public transport network are accessible for all with ease and dignity".
- 15. The Accessibility Charter commits Metlink to a range of actions under the headings:
 - a Develop an action plan
 - b Accessible network design
 - c Accessible infrastructure
 - d Accessible information
 - e Education and training.
- 16. This is all working towards a two-year activity that will help Metlink develop a comprehensive co-designed funding package for consideration in the development of the 2024 triennium's LTP and RLTP. The Accessibility Charter and associated Accessibility Action Plan will be further embedded into the next version of the RPTP.

17. The Accessibility Charter is careful to acknowledge, particularly in relation to assets and infrastructure, that there are instances where Metlink has varying degrees of control in relation to asset design and maintenance. Where Metlink does not have control over asset design and maintenance, the Charter signals that Metlink will "work to influence our strategic partners to consider accessibility in decision making to ensure all transport users have equal opportunities to travel".

Accessibility Action Plan

- 18. One of Metlink's key commitments in the Accessibility Charter is to develop an Accessibility Action Plan and review it annually for the first triennium. This plan will inform Metlink's approach to plan and co-fund accessibility actions and initiatives in the RLTP and LTP.
- 19. The key outcomes from the Accessibility Action Plan as expressed in the Charter are:
 - a Embed the concept of the accessible journey
 - b Co-design and consult through public transport disability community networks, and ensure that people with disabilities and disability service providers are consulted, either through these groups, or directly when planning public transport infrastructure and services, and work with them to identify and resolve accessibility and safety issues
 - c Develop an Action Plan and review it annually for the first triennium. The Accessibility Action Plan will inform Metlink's approach to plan and co-fund accessibility actions and initiatives in the Regional Land Transport Plan and Greater Wellington's Long Term Plan.
- 20. Engagement is key to the success of an Accessibility Action Plan. Co-design of the Action Plan provides a framework to genuinely engage with all stakeholders. Mapping the current activities as a starting point, Metlink will work with the community to iteratively refine, add to and prioritise the action plan over a 12-to-18-month period. Like the Wellington City 2019 Bus Network Review, engagement will be deep and wide. This approach will also enable us to build trust and relationships in the wider community.

Figure 1. Timeline for the development of an Accessibility Action Plan: 2021 - 2024

- 21. **Figure 1** shows the timeline for the development of the Accessibility Action Plan. Actions and initiatives required to improve accessibility will be prioritised in the:
 - a Short-term: planned, budgeted and actionable in the next 12 24 months
 - b Medium-term: new projects that can be initiated in the next 2 3 years and funded under the current 2021 LTP
 - c Long-term: new projects that are included in a single funding package as part of the 2024 triennium's LTP and RLTP.
- 22. In the short-term, Metlink will review current and planned initiatives. These will be mapped onto the accessible journey with delivery dates and budget status (within the LTP) to establish a baseline for the Action Plan to be iteratively developed until 2024.
- 23. To build on and refine the Action Plan, Metlink commits to engage with the disability community across the Wellington region over the next 18 months. Using the accessible journey framework, Metlink will engage individuals and organisations to understand the barriers and opportunities for improving their travel. As we build a body of insight, key needs and priorities will emerge and be mapped against the Action Plan.
- 24. To build on the 'baseline' Action Plan, Metlink will review the prioritisation of existing initiatives and add any new initiatives based on needs highlighted through the engagement. Refinement of the Action Plan will be undertaken with input from Metlink staff, health sector agencies including DHBs, members of the PTAG, advocacy groups like the Poneke Collective, disabled people and sector representatives who participated in the insight engagement. The final Accessibility Action Plan will be presented to Council for approval as part of the 2024 LTP planning process.

Ngā hua ahumoni Financial implications

- 25. Activities associated with development of the Accessibility Action Plan are covered through existing budget.
- 26. A single, coherent package of accessibility projects for funding consideration under the LTP and RLTP will be developed for the 2024 triennium.

Ngā tikanga whakatau Decision-making process

- 27. The matter requiring decision in this report was considered by officers against the decision-making requirements of Part 6 of the Local Government Act 2002.
- 28. Decision-making towards the development of the Accessibility Charter and intention to develop and associated Accessibility Action Plan was undertaken as part of the RPTP consultation and deliberations process.

Te hiranga Significance

- 29. Officers considered the significance (as defined by Part 6 of the Local Government Act 2002) of this matter, taking into account Council's *Significance and Engagement Policy and Decision-making Guidelines*.
- 30. Adoption of the Accessibility Charter is considered to be of low significance as it is already an action item in the RPTP adopted by Council 29 June 2021. The decisions sought through this report are part of a longer process to develop the Accessibility Action Plan.

Te whakatūtakitaki

Engagement

31. Engagement on the Accessibility Charter was conducted through the RPTP consultation and deliberations process. Additional engagement has occurred through formal forums such as PTAG and through co-design processes with Metlink disability stakeholders.

Ngā tūāoma e whai ake nei Next steps

- 32. Following adoption of the Accessibility Charter, officers will work with Greater Wellington Customer Engagement to arrange a suitable launch event and communications subject to Covid-19 restrictions. Te reo and New Zealand Sign versions of the Accessibility Charter will be developed for the launch.
- 33. Officers will continue to engage with the disability community and key stakeholders to develop the Accessibility Action Plan. The Committee will be updated on progress of this work programme through normal channels.
- 34. Officers will continue to advance the wheel-chair accessible vehicle provision project for Porirua and Waikanae/Ōtaki under the umbrella of the Action Plan.

Ngā āpitihanga Attachments

Number	Title
1	Metlink Accessibility Charter 2021-24
2	Metlink Accessibility Action Plan engagement brief

Ngā kaiwaitohu Signatories

Writers	Emmet McElhatton – Principal Advisor Policy, Metlink
	David Boyd – Customer Experience Lead, Metlink
Approvers	Bonnie Parfitt – Manager Network and Customer, Metlink
	Scott Gallacher – General Manager Metlink

He whakarāpopoto i ngā huritaonga Summary of considerations

Fit with Committee's terms of reference

Adoption of the Metlink Accessibility Charter and associated programmes of work fits with the Committee's Terms of Reference 2.2 Approve strategies, policies and guidelines to deliver public transport in accordance with the Wellington Regional Public Transport Plan.

Implications for Māori

Iwi across the Wellington region and Māori health and disability groups are key stakeholders for the activities covered under this report.

Contribution to Annual Plan / Long Term Plan / Other key strategies and policies

The Metlink Accessibility Charter, and associated Accessibility Action Plan, are agreed activities from the Regional Public Transport Plan 2021-31 which was adopted by Council on 29 June 2021. The programme of work developed under the Metlink Accessibility Charter will lead to a consolidated funding bid for accessibility-related infrastructure and service enhancements to the 2024 Long Term Plan and Regional Land Transport Plan.

Internal consultation

Metlink has consulted with Greater Wellington Customer Engagement and Strategy on the matters covered in this report.

Risks and impacts - legal / health and safety etc.

There are no known risks arising from this report.

Public Transport Accessibility Charter 2021

To be reviewed annually over the next triennium (2021-2024)

This Charter provides a pathway to achieving Metlink's commitments to increase accessibility for people with disabilities to our public transport network from 2021 to 2031.

This statement has been prepared in accordance with the following national and international documents:

- United Nations Convention on the Rights of Persons with Disabilities 2006 (ratified by New Zealand Government in 2008)
- New Zealand Human Rights Act 1993
- New Zealand Disability Strategy 2016-2026

Vision

All parts of the Metlink public transport network are accessible for all with ease and dignity.

Actions

Metlink is committed to:

An Action Plan

- Embed the concept of the accessible journey
- Co-design and consult through public transport disability advisory networks, and ensure that people with disabilities and disability service
 providers are consulted, either through these groups, or directly when planning public transport infrastructure and services, and work with them to
 identify and resolve accessibility and safety issues
- Develop an Action Plan and review it annually for the first triennium. The Accessibility Action Plan will inform Metlink's approach to plan and cofund accessibility actions and initiatives in the Regional Land Transport Plan and Greater Wellington's Long Term Plan

Accessible network design

- Identify areas where network and infrastructure planning can support people with disabilities
- Continue to recognise and develop Total Mobility as a core part of the public transport network

Accessible infrastructure

- Where Metlink has control over infrastructure design and maintenance, we will put accessibility at the heart of our decision making to ensure that all transport users have equal opportunities to travel
- Where Metlink does not have control over infrastructure design and maintenance, we will work to influence our strategic partners to consider accessibility in decision making to ensure all transport users have equal opportunities to travel
- Work in partnership with the relevant Territorial Authority when public transport services are reviewed or redesigned to ensure a seamless journey. Include infrastructure and walking access in audits to identify any accessibility shortfalls
- Ensure that public transport vehicles meet required standards for disability access in compliance with Waka Kotahi's Requirements for Urban Buses and Rail Safety Licence requirements as set out in the RPTP

Accessible information

- Specifically consider the information needs of people with disabilities when network changes are proposed and implemented and when new infrastructure is provided or when improvements or changes to existing infrastructure are proposed
- Ensure that services information is accessible and widely available by using appropriate formats and media including both visual and audio channels

- Ensure that all Metlink public consultation documents are provided in accessible formats to enable people with disabilities to participate fully
- Education and training
- Work with operators to ensure that training for all staff across the public transport network includes appropriate assistance for people with disabilities, and continue to require such training as a condition of contract
- Ensure that all drivers on Total Mobility services have specialist training in order to provide adequate and appropriate assistance to people with disabilities
- Empower our people with information and awareness about accessibility and Universal Design to ensure that the public transport system provides for the needs of people with disabilities

Education and training

- Work with operators to ensure that training for all staff across the public transport network includes appropriate assistance for people with disabilities, and continue to require such training as a condition of contract
- Ensure that all drivers on Total Mobility services have specialist training in order to provide adequate and appropriate assistance to people with disabilities
- Empower our people with information and awareness about accessibility and Universal Design to ensure that the public transport system provides for the needs of people with disabilities

Metlink Accessibility Action Plan: Disability Community and Sector Engagement Approach

Metlink Customer Experience Unit

Objective

To co-design Metlink's Accessibility Action Plan with the disability community, disability sector organisations and Metlink staff.

Background

Accessibility improvements are one of the key areas of focus in the 2021 Regional Public Transport Plan and Metlink Strategic Roadmap for 2021-2031. As part of this, Greater Wellington Councillors have committed to a Public Transport Accessibility Charter and an Accessibility Action Plan outlining the improvements for accessibility on the network and the priority in which they will be delivered.

To date Metlink accessibility initiatives for infrastructure, network and customer service have tended to be introduced in an ad-hoc manner, with no apparent prioritisation. Because of limited engagement across the disability sector, expectations of Metlink are unclear and there is a perception that accessibility needs are not prioritised as they should be.

Within this context, Metlink met with disability advocates to discuss how to best engage and plan with the sector. This engagement plan is based on their expert advice.

A co-design approach is required to build a credible action plan, which has buy-in from disabled people and commitment from Metlink staff. This plan must set clear expectations of what needs to be delivered and how delivery is prioritised. As part of this, realistic expectations can be established around what is feasible, based on available budget and resources.

Engagement with the Accessibility Action Plan will also extend our networks within the disability sector, building trust and further opportunities for collaboration.

Scope

Over a period of at least 12 months, starting in late 2021, we aim to engage a broad range of disabled people and sector organisations across the region to ensure a wide a range of perspectives are represented through the Action Plan.

Who we will engage with

- Disabled individuals who use and who don't public transport and Total Mobility
- DPO's Representative (grass-roots) organisations for disabled people (e.g. Blind Citizens NZ)

- Service Providers and support agencies (e.g. Blind and Low Vision NZ, CCS Disability action)
- Government support agencies and institutions (DHB's, Schools and relevant agencies).

While the scope is disability, solutions to improve accessibility will not only benefit people with disabilities but also the wider community. 'Disability' is defined in New Zealand by the Ministry of Health as *"any self-perceived limitation in activity resulting from a long-term condition or health problem lasting or expected to last 6 months or more and not completely eliminated by an assistive device."* This includes physical, intellectual, psychological, sensory and neurological disabilities.

The Accessible Journey

The Action Plan engagement will focus on the 'Accessible Journey'. This is the end-to-end customer journey, as outlined in the table below. This extends beyond the interaction with public transport to ensure disability and access is considered in the full context.

Ste	Steps in the Accessible Journey						
1.	<i>Planning</i> - where information is gathered and how decisions are made to travel						
2.	Preparation – getting ready to leave						
3.	Traveling to public transport - a stop, station or wharf						
4.	Paying – purchasing a ticket / topping up a card						
5.	Boarding – getting on to the public transport vehicle						
6.	The trip on public transport						
7.	Disembarking – getting off the public transport vehicle						
8.	Connecting with another public transport trip						
9.	Traveling from public transport – to the final destination						

Engagement approach

The engagement approach is designed to iteratively develop the Action Plan over 12-months following a three-step process.

Step 1: Creating a baseline for the Action Plan

Metlink will begin the process with an internal review of current and planned initiatives. These will be mapped onto the Accessible Journey with their planned delivery dates and budget status (within the LTP) to establish a baseline for the Action Plan.

Engagement	Logistics
Metlink workshop	Workshop facilitated
A workshop with knowledgeable representatives from each	by Customer
Metlink department (Assets & Infrastructure – including	Experience
Technology, Strategy & Investment, Service Delivery, Network &	
Customer and NTS Project) and interested volunteers. Travel	
Choice should also be included.	

Step 2: Understanding the Accessible Journey

Using the Accessible Journey as our framework, we will engage individuals and organisations to understand their experience of disability, including the barriers and opportunities for improving the journey. To build trust with participants, we won't pre-suppose anything in this stage of the engagement. As we build a body of insight through the engagement, key needs and priorities will emerge and will be mapped against the Action Plan.

Engagement will take two forms:	Logistics
In-home interviews with disabled people	Target number of
In-home interviews are an opportunity to gather deep insights into lived experiences. This 'ethnographic' approach not only	interviews: c.36
seeks to understand how people manage their journey, but also	Interviews led by
how they feel on their journey. Speaking to people in their chosen	Customer Experience
environment also provides further insight into who they are and what they believe.	staff, supported with Metlink staff
	volunteers
Interviews will focus around what they do, how they feel and	
what they need through the accessible journey. An interviewer	
and scribe will ensure observations about thoughts and feelings	
are captured alongside a documented record of their journey.	
Journey mapping workshops	Target number of
Workshops are an opportunity to engage groups of up to 12 people, and will be more suited to engagement with sector	workshops: c.8
organisations and the Public Transport Advisory Group (PTAG).	Workshops led by Customer Experience
Similar to in-home interviews, this approach will capture insights	staff, supported with
on what they do, how they feel and what they need through the	Metlink staff
accessible journey. This is captured collectively through post-its'	volunteers
placed onto the accessible journey by participants. This approach	
quickly identifies key needs and priorities for each group.	

We will also use feedback from Metlink's Service Centre and insights gathered through other Metlink research on customer needs, such as the Total Mobility satisfaction survey.

Step 3: Developing the Action Plan

Drafting the Action Plan

Building on the Baseline Action Plan, we will review the prioritisation of existing initiatives and add any new initiatives based on needs highlighted through the engagement. This draft Action Plan will also consider feasibility, such as time to implement and cost. This exercise will be undertaken in a workshop with Metlink staff and PTAG members.

Testing the Action Plan

The Draft Action Plan will be presented for feedback and refinement to selected groups of engagement participants at a series of 2 - 3 'challenge session' workshops. Participants will be recruited from disabled people and sector representatives who participated in the insight engagement.

Finalising the Action Plan

Testing will inform the Final Action Plan, which will be presented to Council for approval as part of the 2024 LTP. This will not prevent priority actions identified through the process being implemented before this time if they can be achieved within existing 2021 LTP budgets.

Promotion and recruitment for the engagement

Metlink will continue to encourage engagement throughout the 12-month engagement period, inviting individuals and organisations to contact and engage us in the process. The release of the Accessibility Charter will be a high profile opportunity to initiate engagement with sector.

As well as general media and communications for the launch of the Accessibility Charter, direct communications will be sent out to community contacts and the sector inviting participation.

Engagement principles

The following principles are required for successful engagement and co-design:

- We seek the broadest range of representation that can be practically achieved, representing different disabilities, ethnicities and genders.
- We foster trust through close, interpersonal engagement; take time to listen to people's stories.
- We value participants input, financially rewarding them for their time and providing them a record of their input and ongoing updates on the development of the Action Plan.
- We engage Metlink staff through the process, giving them a first-hand experience of the insights and a deep understanding of the needs. At the same time building customer-centric capability and culture within Metlink.

Budget: TBC

Transport Committee 9 September 2021 Report 21.402

For Information

RECENT DERAILMENT INCIDENT ON THE NETWORK

Te take mō te pūrongo Purpose

1. To update the Transport Committee the derailment incident on Tuesday 17 August 2021.

Te tāhū kōrero Background

- 2. On Tuesday 17 August 2021, at approximately 5.50am, Metlink service 6205 from Waikanae to Wellington impacted a slip and consequently derailed on the down main of the North Island Main Trunk (NIMT) between Paekākāriki and Pukerua Bay.
- 3. At this location, the curve speed limit was 65km/hr. The on-board event recorder has confirmed that train was travelling at this speed at the time.
- 4. The units were re-railed overnight using mobile cranes, and full track clearance was given at 5.37pm on 18 August 2021.
- 5. The service was carrying 82 passengers and three train crew at the time of the incident; no injuries were reported. The passengers and crew were safely evacuated with assistance from emergency services.
- 6. Two Matangi units (5281 and 4218) were delivering the service; both units have sustained damage because of the impact and derailment.

Figure 1. FP5218 derailed and pantograph overextended

- 7. The location of the slip was at a cutting at 36.073km on the NIMT. This slope had last been assessed on 5 October 2019, at which time the slope was rated at 165 with a Medium risk rating.
- 8. The derailment site did not have a previous record of failure or debris inundation during heavy rainfall so it would have been unlikely to have been treated as a location of risk or point of interest for pre-weather inspection.
- 9. At a rating of 165, according to KiwiRail's assessment criteria, the slope was not prioritised for remediation.
- 10. The slip was caused by a weather event involving a short period of intense rainfall leading up to the time of the derailment.
- 11. A large volume of water from the rainfall had collected debris (rocks and vegetation) from higher up the escarpment, which wiped out a section of track access walkway as it swept down a stream to a stormwater culvert. All the resulting debris collected and blocked the inlet of the culvert. The debris then backed up at the culvert and spilled over the track.

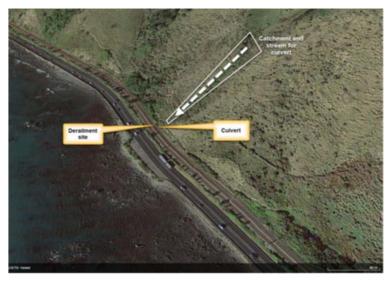


Figure 2 Catchment area and culvert location.

Figure 3 Culvert in relation to derailment location

Figure 4. Slip above Culvert

- 12. Both Matangi units involved in this event have suffered impact damage to Pantographs, underframe equipment, bogies, and wheels and potential water damage to several underframe components. This damage needs to be assessed and quantified when the units return to the Wellington Depot.
- 13. These units will potentially not be available for service for a considerable length of time. In previous events where Matangi have been damaged, units have been out of service for 3 to 6 months awaiting parts and labour availability.
- 14. A full assessment and costs have not been established, but costs are likely to be in the order of \$300,000 \$500,000 for both units, which is below the insurance excess of \$2 million.
- 15. There was minimal damage to the track or overhead wires caused by the slip and subsequent derailment.

Slope stability risk

Risk assessment

- 16. Risks relating to slope stability are currently recorded in Greater Wellington's risk register. The two risks are described as follows:
 - a The condition of third party rail network assets (excluding Wellington Railway Station) to withstand mismanagement, under investment or reduced funding is compromising our ability to provide safe and healthy services
 - b The condition of third party rail network asset (excluding Wellington Railway Station) to withstand mismanagement, under investment or reduced funding is compromising our ability to provide service continuity
- 17. Each quarter, the Metlink risks are considered and reported to the Chief Executive. Greater Wellington's top 10 risks are reported to the Finance, Risk and Assurance Committee.
- 18. A copy of the most recent Greater Wellington risk assessment for these risks is attached as **Attachment 1** to this report.
- 19. Following the derailment incident, officers have reviewed the current Greater Wellington assessments; the current assessments are considered appropriate based on current knowledge. However, as this incident is still under investigation, and conversations with KiwiRail are ongoing, we will monitor current assessed levels closely.

Work undertaken/in progress on slope stability issues

- 20. Greater Wellington has been working with KiwiRail to raise visibility of the slope stability on the Wellington Metro between organisations and within KiwiRail. This has led to a joint steering group being formed to look at the higher risk slopes on the Wellington Metro Network. The purpose of the steering group is to agree on the prioritisation approach for the higher risk slopes in the Wellington Metro area, and to establish the appropriate action to take either reduce the likelihood and/or consequence of the risk.
- 21. The steering group includes representation from Greater Wellington, KiwiRail professional engineering, KiwiRail Wellington Metro Leadership, and the KiwiRail capital upgrade programme. It will be looking at the risks from both a health and safety risk perspective, and from a network service resilience perspective.
- 22. The Wellington Metro Upgrade Programme includes \$10 million of funding to remedy high risk slopes on the Wellington Metro network (200+ rating). Typically, an engineering solution will cost between \$500,000 and \$1m. Mitigating solutions such as catch ditches or barriers may be appropriate at some locations; these have a lower capital cost and ongoing maintenance is required to ensure their effectiveness.
- 23. However, the current funding is insufficient to lower the rating of all 42 high risk slopes. As such, we are working with KiwiRail as part of the metro upgrade discussions and the Wellington Network Access Agreement negotiations to identify further funding that will be required to lower the risks.
- 24. In addition, and following this event, we are commencing discussions with KiwiRail regarding the current risk assessment process. This process is used to prioritise slopes for remediation. The slope rating process is based on a geological assessment of the

slope at the time, historic information, track usage and consequence failure. However, in our view, we need to collectively review the KiwiRail risk rating process to ensure:

- a We are clear as to how the risks are assessed to provide the overall risk score; and
- b The risks to people safety, service, worker safety, our financial position, and our assets is well covered by the assessment process and methodology.
- 25. We have commenced conversations with KiwiRail regarding the above and expect to progress them within the next few weeks.

Ngā tūāoma e whai ake nei Next steps

26. A report on this incident will be presented to Greater Wellington Rail Limited (as owner of the rail assets) on 14 September 2021 and Council's Finance, Risk and Assurance Committee at its next scheduled meeting on 12 October 2021.

Ngā āpitihanga Attachment

Number	Title
1	Quantate risk assessments

Ngā kaiwaitohu Signatories

Writer	Barry Fryer – Rail Assets Lead, Metlink	
Approvers	Fiona Abbott – Manager, Assets and Infrastructure, Metlink	
	Scott Gallacher – General Manager, Metlink	

He whakarāpopoto i ngā huritaonga Summary of considerations

Fit with Council's roles or with Committee's terms of reference

It is appropriate for the Committee to be informed of the derailment as it has oversight of the public transport network in the Wellington Region and has responsibility for considering emerging issues and impacts for public transport.

Implications for Māori

There are no implications for Māori.

Contribution to Annual Plan / Long Term Plan / Other key strategies and policies

The delivery of public transport is a key activity in the Long Term Plan 2021-31.

Internal consultation

There has been no internal consultation outside of Metlink.

Risks and impacts - legal / health and safety etc.

This report informs the Committee of an incident that is within our current risk register.

Residual Overall Inherent ranking by Risk risk level risk level Residual Risk Outlook/ Status Change since last quarterly review plus risk treatments **Risk category** Description Controls Owner residual Id before after score Appetite Trending being considered score (1) Controls Controls We have amended the risk description to remove the Wellington Railway Station from this risk. The WRS is the only station on our network that GWRL does not own. Due to the seismic status of the WRS, we have determined that it should be a standalone risk in Quantate. Note that as a result of removing the WRS from this risk, there has not been a change to the status of this risk. The overall effectiveness of the controls for this risk has shifted from effective to ineffective. These changes result from the • GW ensures that KiwiRail has a following three controls moving from satisfactory to ineffective: robust network management plan Control 1:GW ensures that KiwiRail has a robust network that: management plan that: focuses funded renewal activities on - focuses funded renewal critical components of the network; provides for infrastructure activities on critical components maintenance, monitoring and inspections of the network - provides for infrastructure Control 4: GW partners application to the crown (via NZTA) for maintenance, monitoring and additional funding for 'catch up renewals' for network inspections infrastructure • Services being The condition of third party rail • GW ensures that KiwiRail has an severely network assets(excluding Wellington emergency response plan with Control 5: Maintain strong relationships with the network curtailed Railway Station) to withstand the network owner and operator 7 Very High Medium Fiona operator, including regular meetings and reporting against a 106 • Physical harm to mismanagement, under investment 560 Averse \leftrightarrow (5) Risk Maintain strong relationships Risk Abbott clear set of performance targets or reduced funding is compromising general the with the network operator, our ability to provide safe and public The treatments set out below aim to increase the effectiveness including regular meetings and healthy services Political of these controls: reporting against a clear set of performance targets Option 1: GW leads application to the crown (via MoT) for • GW ensures that KiwiRail has a additional funding for 'catch up renewals' for network safety plan and current safety infrastructure case • GW partners application to the Option 2: Increase oversight of KiwiRail (we will receive funding crown (via NZTA) for additional from NZTA to build capability and capacity to enable us to take funding for 'catch up renewals' for the oversight) network infrastructure Option 3:Currently reviewing Wellington Network Agreement we aim to improve KiwiRail's Asset Management processes Option 4: Request quarterly reporting from kiwiRail on its management of the risks (slope stability - progress against planned activity Treatment update: Option 2: We have received funding from NZTA; we are in the process of determining FTE gap to be filled.

Public Transport Risk Register (30 June 2021)

Residual Overall Inherent ranking by Risk risk level risk level Residual Risk Outlook/ Status Change since last quarterly review plus risk treatments **Risk category** Description Controls Owner residual ld before after score Appetite Trending being considered Controls score (1) Controls • GW ensures that KiwiRail has a robust emergency response plan that: - provides for efficient bus replacements The description of this risk has been amended to specifically - provides for effective customer exclude the Wellington Railway Station. We have excluded the communications in the event of Wellington Railway Station from this risk as a result of its seismic a failure status and the fact that it is the only station in the Wellington - includes a separate set of network that GWRL doesn't own). operational parameters relating to earthquake magnitudes and There has been no change to the status of this risk as a result of readings from network based removing the WRS. ground acceleration sensors Controls are currently classed as ineffective. • GW ensures that KiwiRail has a The condition of third party rail robust network management plan Services being Treatments: network asset owners (excluding that: severely Wellington Railway Station) to - focuses funded renewal 11 Medium Fiona Option 1: Increase oversight of KiwiRail (we will receive funding 115 curtailed withstand mismanagement, under **High Risk** 455 Balanced \leftrightarrow (10) Risk Abbott activities on critical components from NZTA to build capability and capacity to enable us to take investment or reduced funding is • Financial of the network compromising our ability to provide the oversight) • Political - provides for infrastructure service continuity Option 2: Build relationship with MOT/KiwiRail maintenance, monitoring and inspections Option 3: Develop further contract oversight • Maintain strong relationships with network owner and the rail Option 4: Renegotiate WNA to better reflect risks with KiwiRail operator, including regular in network meetings and reporting against a clear set of performance targets Treatment update: Option 1 • GW partners an application to the We have received funding from NZTA; we are in the process of crown (via NZTA) for additional determining FTE gap to be filled. funding for 'catch up renewals' for network infrastructure • GW participates in Metro Operating Model review led by MoT & Treasury

Public Transport Risk Register (30 June 2021)

Transport Committee 9 September 2021 Report 21.401

For Information

PUBLIC TRANSPORT PERFORMANCE – JULY AND ALERT LEVEL 4 UPDATE

Te take mō te pūrongo Purpose

1. To update the Transport Committee (the Committee) on current performance of the public transport network.

Te horopaki Context

Operational performance

- 2. Metlink now has access to a growing array of information that helps to better appreciate and understand the performance of its public transport network.
- 3. Over time, Metlink looks forward to being able to continue to strengthen our insight, expertise, and capability.
- 4. To enable the public to easily access this information, operational reports are updated monthly when the information becomes available and are then published on the Metlink website.
- 5. **Attachment 1** contains an overview (including commentary) of the key results in Metlink's monthly performance report for July 2021.

Return to Alert Level 4

6. At 11:59pm on Tuesday 17 August 2021, New Zealand moved to COVID-19 Alert Level 4; this alert level will be in place for a period of 14 days for the Wellington Region.

Te tātaritanga Analysis

Patronage – impact of moving to Alert Level 4

Impact of Alert Level 4 on bus patronage

 Since moving to Alert Level 4, we have seen a 95.1 percent decrease in bus passenger boardings. On average, there have been 4,000 bus boardings each day under Alert Level 4, compared to an average of 82,000 boardings per weekday prior to lockdown.

Operational performance

Bus performance

- 8. Bus passenger boardings for July 2021 were 1.9 million. Boardings over the month were 94.4 percent of July 2020 boardings. June 2021 boardings were 102.5 percent of boardings for the same month in 2020.
- 9. Reliability for July 2021 was 95.7 percent and punctuality 94.9 percent, compared to June 2021 results of 95.7 percent and 94.8 percent respectively.
- 10. Multiple service cancellations generally due to staff shortages in Wellington, Porirua, and Hutt Valley and a union meeting affected reliability for the month.
- 11. Officers have been working with two Operators to address the significant spike in cancellations that have been impacting some of Metlink's routes. A new timetable for Tranzurban (responsible for the majority of cancellations) was introduced on Sunday 25 July 2021. Early data is already showing a significant improvement in reliability, with cancellations for that Operator dropping back to historic patterns. Metlink is developing timetable changes for NZ Bus and these will be implemented early September 2021.

Rail performance

- 12. Rail passenger boardings for July 2021 were 1.0 million. Boardings over the period were 88.9 percent of July 2020 boardings. This compares to June 2021 boardings being 123.4 percent of boardings for the same month in 2020.
- 13. Reliability in July 2021 was 98.7 percent compared to 98.1 percent in June 2021, while punctuality was 90.6 percent, compared to 89.8 percent in June 2021.
- 14. Weather continued to cause some issues on the network, with ice affecting services on the Kapiti Line, stopping services throughout the morning peak. Services on all lines were affected by severe weather and flooding on 17 July 2021, including the closure of State Highway (SH) 2 affecting bus replacements. Interpeak Wairarapa services were also affected by the closure of SH2 due to an accident on 20 July 2021.
- 15. The Wairarapa Line remains a focus for service improvements upgrade work has started, which will solve some of the long-term issues we have seen with the infrastructure on this line.

Ferry performance

 Boardings for July 2021 were 102.0 percent of boardings for the same month in 2020. In June 2021, boardings were 85.8 percent of June 2020 boardings. Ferry boardings are often affected by weather.

Ngā āpitihanga Attachments

Number	Title
1	Metlink's performance report – July 2021

Ngā kaiwaitohu Signatories

Writer	Andrew Myers – Technology and Data Lead, Metlink	
Approvers	Fiona Abbott – Manager, Assets & Infrastructure	
	Scott Gallacher – General Manager, Metlink	

He whakarāpopoto i ngā huritaonga Summary of considerations

Fit with Council's roles or with Committee's terms of reference

"Reviewing performance trends related to public transport activities" is a specific responsibility set out the Committee's Terms of Reference.

Implications for Māori

There are no implications for Māori.

Contribution to Annual Plan / Long Term Plan / Other key strategies and policies

Certain performance measures in Greater Wellington's Long-Term Plan 2021 - 2031 relate to matters reported on in the operational performance report.

Internal consultation

No other departments were consulted in preparing this report.

Risks and impacts - legal / health and safety etc.

There are no risks arising from this report.

Metlink performance report

July 2021 – for the GWRC Transport Committee

This report contains a summary of key information for July 2021. It provides insight into the performance of our public transport network with a focus on patronage, reliability, punctuality and complaint trends.

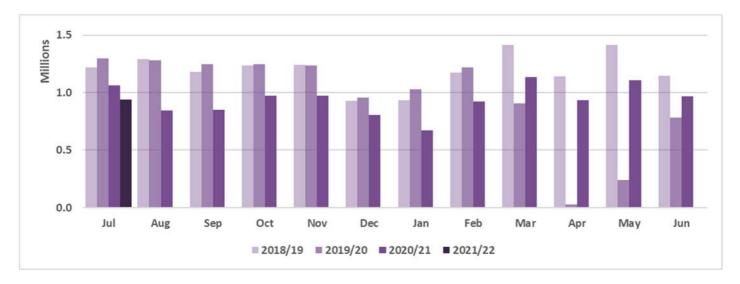
Full monthly performance reports are available under 'Performance of our network' on the Metlink website: <u>https://www.metlink.org.nz/</u>

Patronage

July 2021 saw reduced passenger boardings under alert level 1, when compared to the previous year. Prior to Covid-19 (in 2019/20) we had been seeing record patronage growth for both bus & rail.

Bus Passenger boardings

Under alert level 1, July bus passenger boardings were 5.6% lower than the same month last year. Prior to Covid-19 (in 2019/20), we were seeing increased growth of 7.3% (July 2019 to February 2020).



By area for Ju	I
----------------	---

	Jul-21	Jul-20	% Change
Wellington	1,401,838	1,463,213	-4.2%
Hutt Valley	341,151	376,631	-9.4%
Porirua	69,847	78,196	-10.7%
Kapiti	42,470	46,655	-9.0%
Wairarapa	11,736	12,228	-4.0%
Total	1,867,042	1,976,923	-5.6%

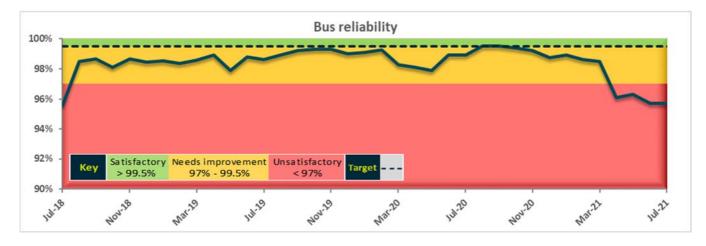
Rail Passenger boardings

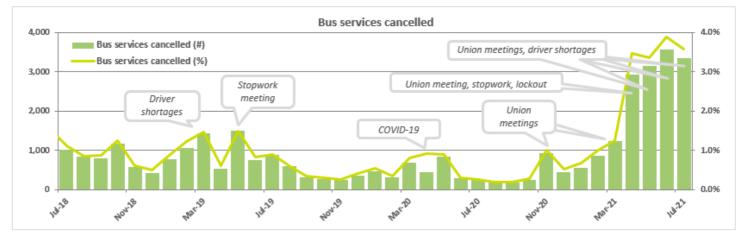
Under alert level 1, July rail passenger boardings were 11.1% lower than the same month last year. Prior to Covid-19 (in 2019/20), we were seeing increased growth of 3.5% (July 2019 to February 2020).

By line for Jul			
	Jul-21	Jul-20	% Change
Hutt Valley	434,700	449,835	-3.4%
Kapiti	356,998	445,720	-19.9%
Johnsonville	95,178	106,923	-11.0%
Wairarapa	56,945	58,860	-3.3%
Total	943,821	1,061,338	-11.1%

Ferry Passenger boardings

July ferry boardings show an increase of 2.0%, on the same month last year. We were seeing a decrease of 1.4% prior to Covid-19 (July 2019 to February 2020). Weather conditions often affect ferry boardings.

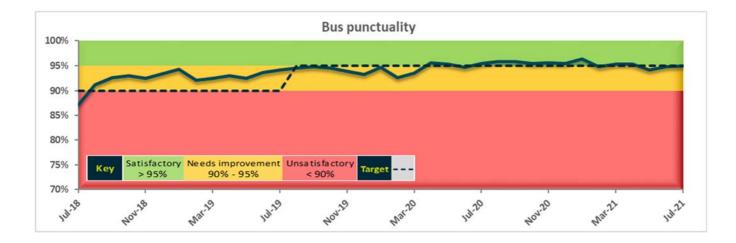

For Jul			
	Jul-21	Jul-20	% Change
Total	12,402	12,155	2.0%


Bus service delivery

Reliability

The bus reliability measure shows the percentage of scheduled services that actually ran, as tracked by RTI and Snapper systems.

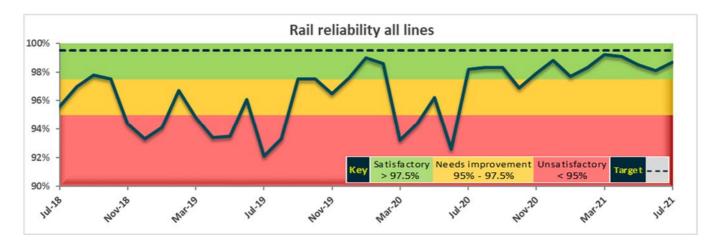
95.7% of bus services were delivered reliably in July. Reliability this month was affected by multiple service cancellations - generally due to staff shortages in Wellington, Porirua, and Hutt Valley, and a union meeting.



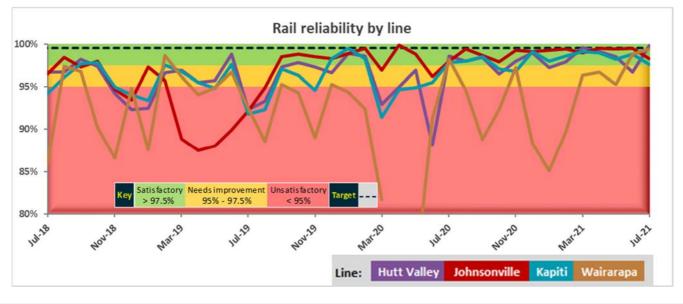
Punctuality

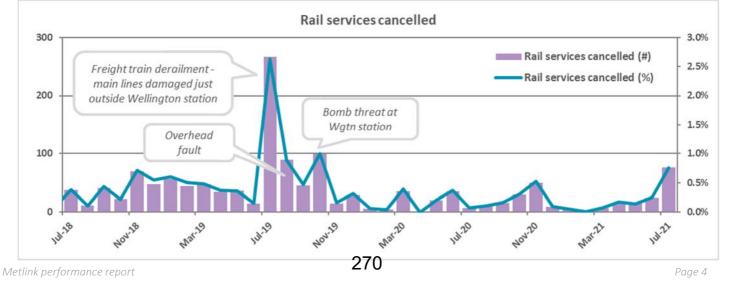
We measure bus punctuality by recording the bus departure from origin, leaving between one minute early and five minutes late.

Bus service punctuality in July was 94.9%. This month punctuality was affected by flooding events in Wellington, Porirua, Hutt Valley and Wairarapa on Saturday 17th July, roadworks in Tawa, smaller roadwork events across the network, and general traffic delays. Late trains and bus replacement arrivals continue to affect punctuality in the Wairarapa.



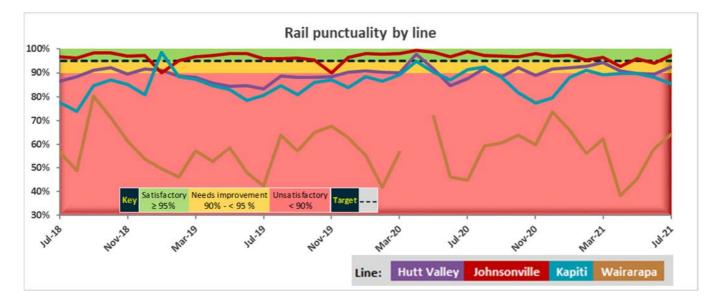
Rail service delivery


Reliability


The rail reliability measure shows the percentage of scheduled services that depart from origin and key stations no earlier than 30 seconds before the scheduled time, meet the consist size for the scheduled service, and stop at all stations timetabled for the service.

Rail service reliability was 98.7% in July. Weather continued to cause some issues on the network, with ice affecting services on the Kapiti line, stopping services throughout the morning peak. Services on all lines were affected by severe weather and flooding on 17th July, including the closure of SH2 affecting bus replacements. Interpeak Wairarapa services were also affected by the closure of SH2 due to an accident on 20th July.

The following graph shows reliability by each rail line. Please note that all Wairarapa services were replaced by buses for the month of April 2020, as indicated by the gap in the graph for the Wairarapa line.


Punctuality

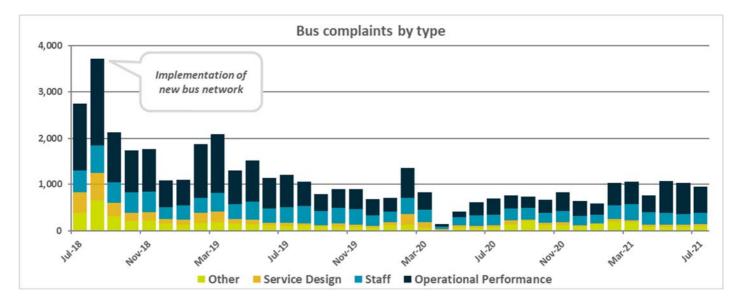
The rail punctuality measure records the percentage of services arriving at key interchange stations and final destination within five minutes of the scheduled time.

Punctuality for July was 90.6%. There were small number of track issues and mechanical faults as well as the weather related issues that affected punctuality, and a large number of speed restrictions affected performance on the Kapiti line.

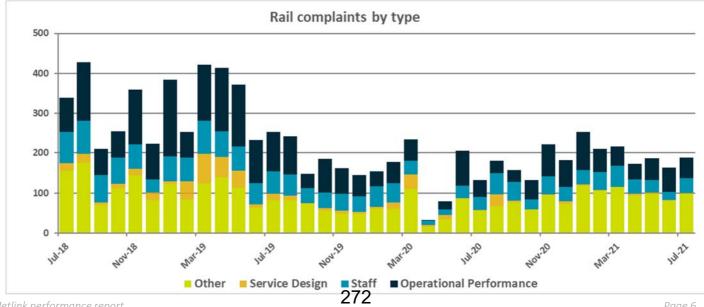
The following graph shows punctuality by each rail line. Please note that all Wairarapa services were replaced by buses for the month of April 2020, as indicated by the gap in the graph for the Wairarapa line.

Attachment 1 to Report 21.401

Complaints


Complaints volume

To compare complaint volumes, Metlink reports the number of complaints per 100,000 passenger boardings.


Bus complaints

Bus complaints for the month were 36.4% higher than in July last year.

Rail complaints

Rail complaints for July were 42.1% higher than the same month last year.

Metlink performance report